【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點PBC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結論正確的有( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

利用角邊角證明APECPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得APE的面積等于CPF的面積相等,然后求出四邊形AEPF的面積等于ABC的面積的一半.

AB=AC,BAC=90°,點PBC的中點,

APBC,AP=PC,EAP=C=45°

∴∠APF+CPF=90°,

∵∠EPF是直角,

∴∠APF+APE=90°,

∴∠APE=CPF,

APECPF中,

,

∴△APE≌△CPF(ASA),

AE=CF,故①②正確;

∵△AEP≌△CFP,同理可證APF≌△BPE,

∴△EFP是等腰直角三角形,故③錯誤;

∵△APE≌△CPF,

SAPE=SCPF,

四邊形AEPF=SAEP+SAPF=SCPF+SBPE=SABC.故④正確,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某縣在實施“村村通”工程中,決定在A、B兩村之間修一條公路,甲、乙兩個工程隊分別從A、B兩村同時開始相向修路,施工期間,甲隊改變了一次修路速度,乙隊因另有任務提前離開,余下的任務由甲隊單獨完成,直到公路修通,甲、乙兩個工程隊各自所修公路的長度y(米)與修路時間x(天)之間的函數(shù)圖象如圖所示.
(1)求甲隊前8天所修公路的長度;
(2)求甲工程隊改變修路速度后y與x之間的函數(shù)關系式;
(3)求這條公路的總長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】思考:填空,并探究規(guī)律

如圖1,圖2,OAEC,OBED,AOB=30°,則圖1中∠CED=_____°;圖2中∠CED=_____°;用一句話概括你發(fā)現(xiàn)的規(guī)律_________________.

應用:已知∠AOB=80°,CED=x°,OACE,OBED,則x的值為_________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,BC=9,AB的垂直平分線交BC與點M,AC的垂直平分線交BC于點N,則△AMN的周長=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,線段cm,點C從點P出發(fā)以1cm/s的速度沿AB向左運動,點D從點B出發(fā)以2cm/s的速度沿AB向左運動(點C在線段AP上,D在線段BP上)

(1)若C,D 運動到任意時刻都有PD=2AC,試說明PB=2AP;

(2)在(1)的條件下,Q是直線AB上一點,若AQ-BQ=PQ,求PQ的值;

(3)在(1)的條件下,若CD運動了一段時間后恰有AB=2CD,這時點C停止運動,點D繼續(xù)在線段PB上運動,MN 分別是CD,PD的中點,求MN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(m,n),且滿足m-2+(n-2)2=0,AABy,垂足為B.

(1)A點坐標;

(2)如圖1,分別以AB,AO為邊作等邊ABCAOD,試判定線段ACDC的數(shù)量關系和位置關系,并說明理由;

(3)如圖2,AAEx,垂足為E,F、G分別為線段OE、AE上的兩個動點 (不與端點重合),滿足∠FBG=45°,OF=a,AG=b,FG=c,試探究的值是 否為定值?如果是,直接寫出此定值:如果不是,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩點P,Q分別從點A和點C同時出發(fā),沿邊AB,CB向終點B移動.其中點P,Q的速度分別為2cm/s,1cm/s,且當其中一點到達終點時,另一點也隨之停止移動.設P,Q兩點移動時間為x s.

(1)用含x的代數(shù)式表示BQ、BP的長度,并求x的取值范圍.
(2)設四邊形APQC的面積為y(cm2),求y與x的函數(shù)關系式?
(3)是否存在這樣的x,使得四邊形APQC的面積是△ABC面積的 ?如果存在,求出x的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

同步練習冊答案