【題目】如圖,AB=AD,AC=AE,BC=DE,點E在BC上.
(1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABC交AC于點F,交AD于點E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1) 求證:AF=DC;
(2) 若AC⊥AB,試判斷四邊形ADCF的形狀,并說明理由;
(3) 當△ABC滿足什么條件時,四邊形ADCF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小學門口有一直線馬路,交警在門口設有一條寬度為4米的斑馬線,為安全起見,規(guī)定車頭距斑馬線后端的水平距離不得低于2米,現(xiàn)有一旅游車在路口遇紅燈剎車停下,汽車里司機與斑馬線前后兩端的視角分別為∠FAE=15°和∠FAD=30°,司機距車頭的水平距離為0.8米,試問該旅游車停車是否符合上述安全標準?(E,D,C,B四點在平行于斑馬線的同一直線上)(參考數(shù)據(jù):tan15°=2-,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.
(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;
(2)若∠B與∠ADC互余,求BD及AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°.點P是射線AB上一動點(與點A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點E、F.
(1)求∠ECF的度數(shù);
(2)隨著點P的運動,∠APC與∠AFC之間的數(shù)量關(guān)系是否改變?若不改變,請求出此數(shù)量關(guān)系;若改變,請說明理由;
(3)當∠AEC=∠ACF時,求∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠B=∠D=90°,AB=BC=15千米,CD=3千米.求四邊形ABCD的周長和面積(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73,≈2.45).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD 與正方形關(guān)于某點中心對稱.已知A,,D三點的坐標分別是(0,4),(0,3),(0,2).
(1)求對稱中心的坐標:
(2)寫出頂點B,C,的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com