【題目】滴滴快車是一種便捷的出行工具,某地的計(jì)價(jià)規(guī)則如表:

小李與小張分別從不同地點(diǎn),各自同時(shí)乘坐滴滴快車,到同一地點(diǎn)相見,已知到達(dá)約定地點(diǎn)時(shí)他們的實(shí)際行車?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車的乘車費(fèi)相同.其中一人先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車時(shí)間,且恰好是另一人實(shí)際乘車時(shí)間的一半,則小李的乘車費(fèi)為_____元.

【答案】26

【解析】

設(shè)先到達(dá)約定地點(diǎn)的實(shí)際乘車時(shí)間為x分鐘,則后到達(dá)約定地點(diǎn)的實(shí)際乘車時(shí)間為2x分鐘,根據(jù)兩人的乘車費(fèi)用相同,即可得出關(guān)于x的一元一次方程,解之即可得出x的值,再將其代入(2×7+0.3×2x)中即可求出結(jié)論.

解:設(shè)先到達(dá)約定地點(diǎn)的實(shí)際乘車時(shí)間為x分鐘,則后到達(dá)約定地點(diǎn)的實(shí)際乘車時(shí)間為2x分鐘,

依題意,得:2×7+0.3×2x2×9+0.3x+1×97),

解得:x20

2×7+0.3×2x26

故答案為:26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,3)B(4,1)、C(11)是平面直角坐標(biāo)系上的三點(diǎn).

1)請(qǐng)畫出ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的A1B1C1;

2)請(qǐng)畫出A1B1C1關(guān)于y軸對(duì)稱A2B2C2;

3)判斷以AA1、A2為頂點(diǎn)的三角形的形狀.(無需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形中,,,點(diǎn)是射線上一點(diǎn),點(diǎn)是射線上一點(diǎn),且滿足.

1)如圖,當(dāng)點(diǎn)在線段上時(shí),若,在線段上截取,聯(lián)結(jié).求證:;

2)如圖,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),若,,設(shè),,求關(guān)于的函數(shù)關(guān)系式及其定義域;

3)記交于點(diǎn),在(2)的條件下,若相似,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,該拋物線是由yx2平移后得到,它的頂點(diǎn)坐標(biāo)為(﹣,﹣),并與坐標(biāo)軸分別交于A,BC三點(diǎn).

1)求A,B的坐標(biāo).

2)如圖2,連接BC,AC,在第三象限的拋物線上有一點(diǎn)P,使∠PCA=∠BCO,求點(diǎn)P的坐標(biāo).

3)如圖3,直線yax+bb0)與該拋物線分別交于P,G兩點(diǎn),連接BP,BG分別交y軸于點(diǎn)D,E.若ODOE3,請(qǐng)?zhí)剿?/span>ab的數(shù)量關(guān)系.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,直線交于點(diǎn)

1)如圖1,若,填空:①的值為____________;

的度數(shù)為___________.

2)如圖2,若,求的值(用含的式子表示)及的度數(shù);

3)若,,將三角形繞著點(diǎn)在平面內(nèi)旋轉(zhuǎn),直接寫出當(dāng)點(diǎn)、在同一直線上時(shí),線段的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意一個(gè)四位數(shù),我們可以記為,即.若規(guī)定: 對(duì)四位正整數(shù)進(jìn)行 F運(yùn)算,得到整數(shù).例如,;

1)計(jì)算:;

2)當(dāng)時(shí),證明:的結(jié)果一定是4的倍數(shù);

3)求出滿足的所有四位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準(zhǔn)備一張矩形紙片,按如圖操作:

將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).

1)求證:四邊形BFDE是平行四邊形;

2)若四邊形BFDE是菱形,BE2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答.

1)解不等式,得 ;

2)解不等式,得

3)把不等式的解集在數(shù)軸上表示出來:

4)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初中學(xué)校每個(gè)年級(jí)學(xué)生剛好為500人,為了解數(shù)學(xué)史知識(shí)的普及情況,隨機(jī)從每個(gè)年級(jí)各抽10名學(xué)生進(jìn)行測(cè)試,測(cè)試成績(jī)整理如下:

年級(jí)

學(xué)生測(cè)試成績(jī)表

七年級(jí)

36

55

67

68

75

81

81

85

92

96

八年級(jí)

45

66

72

77

80

84

86

92

95

96

九年級(jí)

55

68

75

84

85

87

93

94

96

97

1)估計(jì)該校學(xué)生數(shù)學(xué)史掌握水平能達(dá)到80分以上(含80分)的人數(shù);

2)現(xiàn)從成績(jī)?cè)?/span>95分以上(含95分)的學(xué)生中,任取3名參加數(shù)學(xué)史學(xué)習(xí)的經(jīng)驗(yàn)匯報(bào),求每個(gè)年級(jí)恰好都有一名學(xué)生參加的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案