【題目】健益超市購進一批/千克的綠色食品,如果以/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)存在如下圖所示的一次函數(shù)關(guān)系.

試求出的函數(shù)關(guān)系式;

設(shè)健益超市銷售該綠色食品每天獲得利潤為元,當(dāng)銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?

根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于元,請你幫助該超市確定綠色食品銷售單價的范圍(直接寫出).

【答案】,不寫自變量取值范圍不扣分)當(dāng)銷售單價為/千克時,每天可獲得最大利潤元.

【解析】

(1)由圖象過點(30,400)和(40,200)易求直線解析式;
(2)每天利潤=每千克的利潤×銷售量.據(jù)此列出表達式,運用函數(shù)性質(zhì)解答;
(3)畫出函數(shù)圖象,結(jié)合圖形回答問題.

設(shè),由圖象可知,

解之,得

,不寫自變量取值范圍不扣分).

,

有最大值.

當(dāng)時,

即當(dāng)銷售單價為/千克時,每天可獲得最大利潤元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,,, .將下列推理過程補充完整:

1)因為(已知),所以____

2)因為(已知),所以______,(__________________________

3)因為(已知),所以________________,(___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是線段的中點,過點的射線的角,點為射線上一動點,給出以下四個結(jié)論:

①當(dāng),垂足為時,

②當(dāng)時,;

③在射線上,使為直角三角形的點只有1個;

④在射線上,使為等腰三角形的點只有1個;

其中正確結(jié)論的序號是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形.

(1)如圖1,點D是邊BC的中點,∠ADE60°,且DE交△ABC外角∠ACF的平分線CE于點E,求證:ADDE(提示:取AB的中點G,連接DG)

(2)小穎對(1)題進行了探索:如果將(1)題中的D是邊BC的中點改為D是直線BC上任意一點(BC兩點除外)”,其它條件不變,結(jié)論ADDE是否仍然成立?小穎將點D的位置分為三種情形,畫出了圖2、圖3、圖4,現(xiàn)在請你在圖2、圖3、圖4中選擇一種情形,幫小穎驗證:結(jié)論ADDE是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為23、4,正放置的四個正方形的面積分別為S1,S2S3,S4,則S1+S2+S3+S4=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了實現(xiàn)暢通市區(qū)的目標(biāo),市地鐵一號線準(zhǔn)備動工,市政府現(xiàn)對地鐵一號線第標(biāo)段工程進行招標(biāo),施工距離全長為米.經(jīng)招標(biāo)協(xié)定,該工程由甲、乙兩公司承建,甲、乙兩公司施工方案及報價分別為:

甲公司施工單價(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為

乙公司施工單價(萬元/米)與施工長度(米)之間的函數(shù)關(guān)系為

(注:工程款施工單價施工長度)

如果不考慮其他因素,單獨由甲公司施工,那么完成此項工程需工程款多少萬元?

考慮到設(shè)備和技術(shù)等因素,甲公司必須邀請乙公司聯(lián)合施工,共同完成該工程.因設(shè)備共享,兩公司聯(lián)合施工時市政府可節(jié)省工程款萬元(從工程款中扣除).

如果設(shè)甲公司施工,那么乙公司施工________米,其施工單價________萬元/米,試求市政府共支付工程款(萬元)與(米)之間的函數(shù)關(guān)系式;

如果市政府支付的工程款為萬元,那么應(yīng)將多長的施工距離安排給乙公司施工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、cABC中∠A、B、C的對邊,拋物線y=x2﹣2ax+b2x軸于M(a+c,0),則ABC是( 。

A. 等腰三角形 B. 等邊三角形 C. 直角三角形 D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3

(1)請你把已知的二次函數(shù)化成y=(x﹣h)2+k的形式,并在平面直角坐標(biāo)系中畫出它的圖象;

(2)如果A(x1,y1)、B(x2,y2)是(1)中像上的兩點,且x1<x2<1,請直接寫出y1、y2的大小關(guān)系為   

(3)利用(1)中的圖象表示出方程x2﹣2x﹣1=0的根,畫在(1)的圖象上即可,要求保留畫圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,以A1B1為直角邊作第三個RtA1B1A2,…,依次規(guī)律,得到RtB2017A2018B2018,則點B2018的縱坐標(biāo)為_______

查看答案和解析>>

同步練習(xí)冊答案