【題目】根據(jù)幾何圖形的面積關(guān)系可以形象直觀地表示多項式的乘法.例如:(2a+b)(a+b)2a2+3ab+b2可以用圖(1)表示

(1)根據(jù)圖(2),寫出一個多項式乘以多項式的等式;

(2)A,B兩題中任選一題作答:

A.請畫出一個幾何圖形,表示(x+p)(x+q)x2+(p+q)x+pq,并仿照上圖標明相應的字母;

B.請畫出一個幾何圖形,表示(xp)(xq)x2(p+q)x+pq,并仿照上圖標明相應的字母.

【答案】(1)(a+2b)(2a+b)2a2+5ab+2b2;(2)A:見解析;B:見解析.

【解析】

1)利用長方形的面積公式列式,根據(jù)多項式法則進行計算;

2)仿照圖(2)畫圖確定長方形的邊長.

1)由圖2可得等式:(a+2b)(2a+b=2a2+5ab+2b2;

2A.畫出的圖形如下:

B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在我市中小學生“我的中國夢”讀書活動中,某校對部分學生做了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學生可根據(jù)自己的愛好任選其中一類.學校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請你結(jié)合圖中信息,解答下列問題:

(1)本次共調(diào)查了 名學生;

(2)被調(diào)查的學生中,最喜愛丁類圖書的有 人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的 %;

(3)在最喜愛丙類學生的圖書的學生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學校共有學生1500人,請你估計該校最喜愛丙類圖書的女生和男生分別有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.

(1)求證:DF是⊙O的切線;
(2)若 ,半徑OA=3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c滿足|a-|++(c-)2=0.

(1)a,b,c的值

(2)試問以a,b,c為邊能否構(gòu)成三角形?若能,求出其周長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,填空并填寫理由:

(1)因為∠1=∠2,所以ADBC__________

(2)因為A+∠ABC=180°,所以ADBC________

(3)因為_____________,所以C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補)

(4)因為____________,所以∠3=∠C(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù) 的圖象與性質(zhì).
小慧根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù) 的圖象與性質(zhì)進行了探究.
下面是小慧的探究過程,請補充完成:
(1)函數(shù) 的自變量x的取值范圍是;
(2)列出y與x的幾組對應值.請直接寫出m的值,m=;

x

-3

-2

0

1

1.5

2.5

m

4

6

7

y

2.4

2.5

3

4

6

-2

0

1

1.5

1.6


(3)請在平面直角坐標系 , 描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì):
;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )

A. 24天的銷售量為200 B. 10天銷售一件產(chǎn)品的利潤是15

C. 12天與第30天這兩天的日銷售利潤相等 D. 30天的日銷售利潤是750

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的C'處,點D落在點D'處,C'D'交線段AE于點G.

(1)求證:△BC'F∽△AGC';
(2)若C'是AB的中點,AB=6,BC=9,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點B與點D重合,折痕為MN,若AB=2,BC=4,那么線段MN的長為(
A.
B.
C.
D.2

查看答案和解析>>

同步練習冊答案