【題目】某通訊運(yùn)營商的手機(jī)上網(wǎng)流量資費(fèi)標(biāo)準(zhǔn)推出了三種優(yōu)惠方案:
方案A:按流量計(jì)費(fèi),0.1元/M;
方案B:20元流量套餐包月,包含500M流量,如果超過500M,超過部分另外計(jì)費(fèi)(見圖象),如果用到1000M時(shí),超過1000M的流量不再收費(fèi);
方案C:120元包月,無限制使用.
用x表示每月上網(wǎng)流量(單位:M),y表示每月的流量費(fèi)用(單位:元),方案B和方案C對(duì)應(yīng)的y關(guān)于x的函數(shù)圖象如圖所示,請(qǐng)解決以下問題:
(1)寫出方案A的函數(shù)解析式,并在圖中畫出其圖象;
(2)直接寫出方案B的函數(shù)解析式;
(3)若甲乙兩人每月使用流量分別在300—600M,800—1200M之間,請(qǐng)你分別給出甲乙二人經(jīng)濟(jì)合理的選擇方案.
【答案】見解析
【解析】分析:(1)根據(jù)流量計(jì)費(fèi)單價(jià)即可解決.
(2)根據(jù)方案B函數(shù)的圖象經(jīng)過(500,20),(1000,130),先求出中間段直線的解析式,再寫出分段函數(shù)解析式.
(3)畫出圖象,根據(jù)關(guān)鍵點(diǎn),利用函數(shù)圖象解決問題.
詳解:(1)方案A的函數(shù)解析式為y=0.1x,圖象如圖所示.
(2)如圖可知方案B函數(shù)的圖象經(jīng)過(500,20),(1000,130),
可以求出中間段直線的解析式為y=0.22x-90,
∴方案B的解析式為
y=,
(3)如圖設(shè)方案A的函數(shù)圖象與方案B的函數(shù)圖象交于點(diǎn)M、N,與方案C函數(shù)圖象的交于點(diǎn)Q,則M(200,20),N(750,75),Q(1200,120),
因此,上網(wǎng)流量在200M以下的選用方案A,
上網(wǎng)流量在200M和750M之間的選用方案B,
上網(wǎng)流量在750M和1200M之間的選用方案A,
上網(wǎng)流量在1200以上M的選用方案C,
上網(wǎng)流量在200M或750M的選用方案A或B費(fèi)用一樣,
上網(wǎng)流量是1200M的選用方案A或C費(fèi)用一樣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,并探究相關(guān)的問題:
(閱讀)
的幾何意義是數(shù)軸上,兩數(shù)所對(duì)的點(diǎn),之間的距離,記作,如的幾何意義:表示與兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;可以看做,幾何意義可理解為與兩數(shù)在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.
(1)數(shù)軸上表示和的兩點(diǎn)和之間的距離可表示為____________;如果,求出的值;
(2)探究:是否存在最小值,若存在,求出最小值;若不存在,請(qǐng)說明理由;
(3)求的最小值,并指出取最小值時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量小山上方某信號(hào)塔PQ的高度,他們?cè)?/span>A處測(cè)得信號(hào)塔頂端P的仰角為45°,信號(hào)塔低端Q的仰角為31°,沿水平地面向前走100米到處,測(cè)得信號(hào)塔頂端P的仰角為68°.求信號(hào)塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…,按此規(guī)律第6個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q在數(shù)軸上表示的數(shù)分別是-8、4,點(diǎn)P以每秒2個(gè)單位的速度運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā)向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)若運(yùn)動(dòng)2秒時(shí),則點(diǎn)P表示的數(shù)為_______,點(diǎn)P、Q之間的距離是______個(gè)單位;
(2)求經(jīng)過多少秒后,點(diǎn)P、Q重合?
(3)試探究:經(jīng)過多少秒后,點(diǎn)P、Q兩點(diǎn)間的距離為6個(gè)單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB邊上的中點(diǎn),Rt△EFG的直角頂點(diǎn)E在AB邊上移動(dòng).
(1)如圖1,若點(diǎn)D與點(diǎn)E重合且EG⊥AC、DF⊥BC,分別交AC、BC于點(diǎn)M、N,
易證EM=EN;如圖2,若點(diǎn)D與點(diǎn)E重合,將△EFG繞點(diǎn)D旋轉(zhuǎn),則線段EM與EN的長度還相等嗎?若相等請(qǐng)給出證明,不相等請(qǐng)說明理由;
(2)將圖1中的Rt△EGF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0<α<45). 如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠MDC=15時(shí),連接MN,若AC=BC=2,請(qǐng)求出寫出線段MN的長;
(3) 圖3, 旋轉(zhuǎn)后,若Rt△EGF的頂點(diǎn)E在線段AB上移動(dòng)(不與點(diǎn)D、B重合),當(dāng)AB=3AE時(shí),線段EM與EN的數(shù)量關(guān)系是________;當(dāng)AB=m·AE時(shí),線段EM與EN的數(shù)量關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1,),則點(diǎn)C的坐標(biāo)為( )
A. (,-1)B. (-1,)C. (,1)D. (-,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,點(diǎn)M是AD的中點(diǎn),若動(dòng)點(diǎn)N從點(diǎn)B出發(fā)沿邊BC方向向終點(diǎn)C運(yùn)動(dòng),連結(jié)BM,CM,AN,DN,則在整個(gè)運(yùn)動(dòng)過程中,陰影部分面積和的大小變化情況是( 。
A.不變B.一直變大C.先減小后增大D.先增大后減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com