【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
(1)易證∠ADB=∠AEC=90°,AB=AC,即可證明Rt△BDA≌Rt△CEA,即可解題;
(2)根據(jù)(1)中結(jié)論可得AE=CD,根據(jù)直角三角形斜邊的中線等于斜邊的一半的性質(zhì)可得AD=DE,即可解題.
證明:(1)∵△ABC是等邊三角形,
∴AB=BC=AC,
∵D是AC中點,
∴∠CBD=∠ABD=30°,∠BDA=90°,
∵AE⊥EC,
∴∠AEC=90°,
在Rt△BDA和Rt△CEA中,
,
∴Rt△BDA≌Rt△CEA(HL);
(2)∵△BDA≌△CEA,
∴AE=AD,
∵D為邊AC的中點,AE⊥EC,
∴AD=DE,
∴AD=DE=AE,
∴△ADE是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點E,交AC于點F.若D為BC邊的中點,M為線段EF上一個動點,則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因為,即,所以的整數(shù)部分為2,小數(shù)部分為,請解答下列問題:
(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;
(2)已知,其中x是整數(shù),且,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,AB=2,AD⊥BC,以AD、CD為鄰邊做矩形ADCE,將△ADC繞點D順時針旋轉(zhuǎn)一定的角度得到△A′DC′使點A′落在CE上,連接AA′,CC′.
(1)求AD的長;
(2)求證:△ADA′∽△CDC′;
(3)求CC′2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC.MN是過點A的直線,BD⊥MN 于D,CE⊥MN于E.
(1)求證:BD=AE.
(2)若將MN繞點A旋轉(zhuǎn),使MN與BC相交于點G(如圖2),其他條件不變,求證:BD=AE.
(3)在(2)的情況下,若CE的延長線過AB的中點F(如圖3),連接GF,求證:∠AFE=∠BFG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點P(2,6),B(4,0),若以PB為邊在第一象限內(nèi)作等腰直角三角形△PBC,則點C的坐標為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩城市為了解決空氣質(zhì)量污染問題,對城市及其周邊的環(huán)境污染進行了綜合治理.在治理的過程中,環(huán)保部門每月初對兩城市的空氣質(zhì)量進行監(jiān)測,連續(xù)10個月的空氣污染指數(shù)如圖1所示.其中,空氣污染指數(shù)≤50時,空氣質(zhì)量為優(yōu);50<空氣污染指數(shù)≤100時,空氣質(zhì)量為良;100<空氣污染指數(shù)≤150時,空氣質(zhì)量為輕微污染.
(1)請?zhí)顚懴卤恚?/span>
平均數(shù) | 方差 | 中位數(shù) | 空氣質(zhì)量為優(yōu)的次數(shù) | |
甲 | 80 | |||
乙 | 80 | 1060 |
(2)請回答下面問題
①從平均數(shù)和中位數(shù)來分析,甲,乙兩城市的空氣質(zhì)量.
②從平均數(shù)和方差來分析,甲,乙兩城市的空氣質(zhì)量情況.
③根據(jù)折線圖上兩城市的空氣污染指數(shù)的走勢及優(yōu)的情況來分析兩城市治理環(huán)境污染的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
在平面幾何中,我們學過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問題:
(1)求過點P(1,4)且與已知直線y=-2x-1平行的直線的函數(shù)表達式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點A、B,如果直線:y=kx+t ( t>0)與直線l平行且交x軸于點C,求出△ABC的面積S關(guān)于t的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com