【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東37°方向上的B處,求此時輪船所在的B處與燈塔P的距離(sin53°=0.8,sin37°=0.6,tan53°=1.3,結(jié)果精確到0.1).
科目:初中數(shù)學 來源: 題型:
【題目】在正方形的網(wǎng)格中,網(wǎng)線的交點稱為格點,如圖,點A、B、C都是格點.已知每個小正方形的邊長為1個單位長度,已知A、B的坐標分別為(-1,2)、(1,2).
(1)建立平面直角坐標系,寫出點C的坐標.
(2)畫出過A、B、C三點的圓.
(3)在這8×8的網(wǎng)格中找一格點P,使得△PAB的面積與△ABC 的面積相等,并且點P在(2)中所作的圓外,寫出點P的坐標.(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)將生活垃圾分為可回收、廚余和其它三類,分別記為a,b,c,并設(shè)置了相應(yīng)的垃圾箱,“可回收物”箱、“廚余垃圾”箱和“其他垃圾”箱,分別記為A,B,C.
(1)某天,小明把垃圾分裝在三個袋中,可他在投放時粗心,每袋垃圾都放錯了位置(每個箱中只投放一袋),請你用畫樹狀圖或列表法求小明把每袋垃圾都放錯的概率;
(2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)三類垃圾箱中總1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸);
A | B | C | |
a | 240 | 30 | 30 |
b | 100 | 400 | 100 |
c | 20 | 20 | 60 |
試估計“可回收物”投放正確的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+3x+c(a,c為常數(shù),且a≠0)經(jīng)過點(﹣1,﹣1),(0,3),有下列結(jié)論:
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③3是方程ax2+2x+c=0的一個根;
④當﹣1<x<3時,ax2+2x+c>0
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設(shè)運動時間為t(0<t<)秒.解答如下問題:
(1)當t為何值時,PQ∥BO?
(2)設(shè)△AQP的面積為S,
①求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2﹣x1,y2﹣y1)稱為“向量PQ”的坐標.當S取最大值時,求“向量PQ”的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若=,求證A為EH的中點;
(3)若EA=EF=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點E在BD上;
(1)求證:FD=AB;(2)連接AF,求證:∠DAF=∠EFA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場,順風車行經(jīng)營的型車去年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的型車數(shù)量相同,則今年6月份型車銷售總額將比去年6月份銷售總額增加.
,兩種型號車的進貨和銷售價格表:
型車 | 型車 | |
進貨價格(元輛) | 1100 | 1400 |
銷售價格(元輛) | 今年的銷售價格 | 2400 |
(1)求今年6月份型車每輛銷售價多少元;
(2)該車行計劃7月份新進一批型車和型車共50輛,且型車的進貨數(shù)量不超過型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形 ABCD 中,過點 A 作 AE⊥DC 交 DC 的延長線于點 E,過點 D 作DF // EA 交 BA 的延長線于點 F.
(1)求證:四邊形 AEDF 是矩形;
(2)連接BD,若 AB=AE=2,tan FAD ,求 BD 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com