【題目】如圖,在 中, , 軸,垂足為 .反比例函數(shù) ( )的圖像經(jīng)過(guò)點(diǎn) ,交 于點(diǎn) .已知 , .
(1)若 ,求 的值;
(2)連接 ,若 ,求 的長(zhǎng).
【答案】
(1)
解:過(guò)點(diǎn)C作CD⊥AB于E,
因?yàn)锳C=BC,
所以AE=BE=2,
在Rt△BCE中,CE=,
則點(diǎn)C的橫坐標(biāo)為4-,
即C(,2)。
將點(diǎn)C(,2)代入y=,得k=5。
(2)
解:設(shè)A點(diǎn)的坐標(biāo)為(m,0).
因?yàn)锽D=BC=
所以AD=
則D,C兩點(diǎn)的坐標(biāo)分別為(m,),(m-,2) .
因?yàn)辄c(diǎn)D,C都在y=的圖象上,
所以,
所以m=6
所以點(diǎn)C的坐標(biāo)為(,2)
作CF⊥x軸,垂足為F.在Rt△OCF中,
OC=.
【解析】(1)求點(diǎn)C的坐標(biāo),過(guò)點(diǎn)C作CD⊥AB于E,則AE=BE=2,由勾股定理求出CE,則求得點(diǎn)C的坐標(biāo),代入反比例函數(shù)即可解得;
(2)求點(diǎn)C的坐標(biāo),設(shè)A點(diǎn)的坐標(biāo)為(m,0),由BD=BC=,可得D的縱坐標(biāo)為AD=,則D(m,),C(m-,2) .由點(diǎn)D,C都在y=的圖象上,,可求出m的值,即而求出點(diǎn)C的坐標(biāo),根據(jù)勾股定理即可求OC的長(zhǎng)。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角),以及對(duì)勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE和△ACF中,EB交AC于點(diǎn)M,交FC于點(diǎn)D,AB交FC于點(diǎn)N,∠E=∠F=90°,∠B=∠C,AE=AF.下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中,正確的是_________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水是人類(lèi)的生命之源.為了鼓勵(lì)居民節(jié)約用水,相關(guān)部門(mén)實(shí)行居民生活用水階梯式計(jì)量水價(jià)政策.若居民每戶(hù)每月用水量不超過(guò)10立方米,每立方米按現(xiàn)行居民生活用水水價(jià)收費(fèi)(現(xiàn)行居民生活用水水價(jià)=基本水價(jià)+污水處理費(fèi));若每戶(hù)每月用水量超過(guò)10立方米,則超過(guò)部分每立方米在基本水價(jià)基礎(chǔ)上加價(jià)100%,每立方米污水處理費(fèi)不變.甲用戶(hù)4月份用水8立方米,繳水費(fèi)27.6元;乙用戶(hù)4月份用水12立方米,繳水費(fèi)46.3元.(注:污水處理的立方數(shù)=實(shí)際生活用水的立方數(shù))
(1)求每立方米的基本水價(jià)和每立方米的污水處理費(fèi)各是多少元?
(2)如果某用戶(hù)7月份生活用水水費(fèi)計(jì)劃不超過(guò)64元,該用戶(hù)7月份最多可用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn) 與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線(xiàn)上,直線(xiàn)AC與y軸交于點(diǎn)D.
(1)求c的值及直線(xiàn)AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線(xiàn)AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(zhǎng)(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的沿湖道路 上有 、 兩個(gè)游船碼頭,觀(guān)光島嶼 在碼頭 北偏東 的方向,在碼頭 北偏西 的方向, .游客小張準(zhǔn)備從觀(guān)光島嶼 乘船沿 回到碼頭 或沿 回到碼頭 ,設(shè)開(kāi)往碼頭 、 的游船速度分別為 、 ,若回到 、 所用時(shí)間相等,則 (結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù) 的圖像與 軸交于 、 兩點(diǎn),與 軸交于點(diǎn) , .點(diǎn) 在函數(shù)圖像上, 軸,且 ,直線(xiàn) 是拋物線(xiàn)的對(duì)稱(chēng)軸, 是拋物線(xiàn)的頂點(diǎn).
圖 ① 圖②
(1)求 、 的值;
(2)如圖①,連接 ,線(xiàn)段 上的點(diǎn) 關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn) 恰好在線(xiàn)段 上,求點(diǎn) 的坐標(biāo);
(3)如圖②,動(dòng)點(diǎn) 在線(xiàn)段 上,過(guò)點(diǎn) 作 軸的垂線(xiàn)分別與 交于點(diǎn) ,與拋物線(xiàn)交于點(diǎn) .試問(wèn):拋物線(xiàn)上是否存在點(diǎn) ,使得 與 的面積相等,且線(xiàn)段 的長(zhǎng)度最。咳绻嬖,求出點(diǎn) 的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)∠AOC是哪兩個(gè)角的和;(2)∠AOB是哪兩個(gè)角的差;
(3)如果∠AOB=∠COD,那么∠AOC與∠DOB相等嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù) 1 至 1050 按一定規(guī)律排列如下表:
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 | 32 | 33 | 34 | 35 |
從表中任取一個(gè) 3 3 的方框(如表中帶陰影的部分),方框中九個(gè)數(shù)的和可能是( )
A. 2025 B. 2018 C. 2016 D. 2007
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線(xiàn)AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線(xiàn)AD的取值范圍是_________;
(2)問(wèn)題解決:
如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com