【題目】如圖,分別以的邊,所在直線為對稱軸作的對稱圖形和,,線段與相交于點,連接、、、.有如下結(jié)論:①;②;③平分;其中正確的結(jié)論個數(shù)是( )
A.0個B.3個C.2個D.1個
【答案】B
【解析】
根據(jù)軸對稱的性質(zhì)以及全等三角形的性質(zhì)對每個結(jié)論進行一一判斷即可.
解:∵△ABD和△ACE是△ABC的軸對稱圖形,
∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,
∴∠EAD=3∠BAC360°=3×150°360°=90°,故①正確;
∴∠ABE=∠CAD=×(360°90°150°)=60°,
由翻折的性質(zhì)得,∠AEC=∠ABD=∠ABC,
又∵∠EPO=∠BPA,
∴∠BOE=∠BAE=60°,故②正確;
在△ACE和△ADB中,
,
∴△ACE≌△ADB,
∴S△ACE=S△ADB,BD=CE,
∴BD邊上的高與CE邊上的高相等,
即點A到∠BOC兩邊的距離相等,
∴OA平分∠BOC,故③正確;
綜上所述,結(jié)論正確的是①②③,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①abc>0,
②a﹣b+c<0,
③2a=b,
④4a+2b+c>0,
⑤若點(﹣2,)和(,)在該圖象上,則.
其中正確的結(jié)論是 (填入正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F是正方形ABCD的邊CD上兩個動點,滿足DE=CF.連接AE交BD于點I,連接BF交CI于點H,G為BC邊上的中點.若正方形的邊長為4,則線段DH長度的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某船自西向東航行,在處測得某島在北偏東的方向上,前進海里后到達,此時,測得海島在北偏東的方向上,要使船與海島最近,則船應(yīng)繼續(xù)向東前進________海里.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了改善辦公條件,計劃從廠家購買、兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬元購買種型號電腦的數(shù)量相同.求、兩種型號電腦每臺價格各為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為12,點O為對角線AC、BD的交點,點E在CD上,tan∠CBE= ,過點C作CF⊥BE,垂足為F,連接OF,將△OCF繞著點O逆時針旋轉(zhuǎn)90°得到△ODG,連接FG、FD,則△DFG的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點D,若AI=2CD,點E為弦AC的中點,連接EI,IC,若IC=6,ID=5,則IE的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com