【題目】某校為了改善辦公條件,計劃從廠家購買、兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多01萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬元購買種型號電腦的數(shù)量相同.求、兩種型號電腦每臺價格各為多少萬元?

【答案】AB兩種型號電腦每臺價格分別是0.5萬元和0.4萬元

【解析】

設(shè)A種型號電腦每臺價格為x萬元,則B種型號電腦每臺價格(x0.1)萬元.根據(jù)“用10萬元購買A種型號電腦的數(shù)量與用8萬購買B種型號電腦的數(shù)量相同”列出方程并解答.

解:設(shè)A種型號電腦每臺價格為x萬元,則B種型號電腦每臺價格(x0.1)萬元,

根據(jù)題意得:

,

解得:x=0.5,

經(jīng)檢驗:x=0.5是原方程的解,所以x0.1=0.4,

答:AB兩種型號電腦每臺價格分別是0.5萬元和0.4萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在ABC中,AB的垂直平分線交BC于點M,交AB于點E,AC的垂直平分線交BC于點N,交AC于點F,連接AMAN

1)求證:AMN的周長=BC;

2)若ABAC,∠BAC120°,試判斷AMN的形狀,并證明你的結(jié)論;

3)若∠C45°,AC3BC9,如圖2所示,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,EFBC上,且CF=BE,連接DE,過點FFGAB于點G

1)如圖1,若∠B=60°,DE平分∠ADC,且 ,求平行四邊形ABCD的面積.

2)點HGF上,且HE=HF,延長EHAC,CD于點O,Q,連接AQ,若AC=BC=EQ,∠EQC=45°,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船在處發(fā)現(xiàn)乙船在北偏東的處,如果此時乙船正以每小時海里的速度向正北方向行駛,而甲船的速度是海里/小時,這時甲船向________方向行駛才能最快追上乙.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以的邊所在直線為對稱軸作的對稱圖形,,線段相交于點,連接、、.有如下結(jié)論:;②;③平分;其中正確的結(jié)論個數(shù)是(

A.0B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點P0的坐標(biāo)為(2,0),將點P0繞著原點O按逆時針方向旋轉(zhuǎn)60°得點P1,延長OP1到點P2,使OP2=2OP1,再將點P2繞著原點O按逆時針方向旋轉(zhuǎn)60°得點P3,則點P3的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=1,BC=,對角線AC,BD交于O點,將直線AC繞點O順時針旋轉(zhuǎn),分別交于BC,AD于點E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為   時,四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不可能,請說明理由;如果可能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,上午8時,一條船從處測得燈塔在北偏西,以15海里/時的速度向北航行,930分到達處,測得燈塔在北偏西,若船繼續(xù)向正北方向航行,求輪船何時到達燈塔的正東方向處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,長沙開始推廣垃圾分類,分類垃圾桶成為我們生活中的必備工具.某學(xué)校開學(xué)初購進型和型兩種分類垃圾桶,購買型垃圾桶花費了2500元,購買型垃圾桶花費了2000元,且購買型垃圾桶數(shù)量是購買型垃圾桶數(shù)量的2倍,已知購買一個型垃圾桶比購買一個型垃圾桶多花30元.

1)求購買一個型垃圾桶、B型垃圾桶各需多少元?

2)由于實際需要,學(xué)校決定再次購買分類垃圾桶,已知此次購進型和型兩種分類垃圾桶的數(shù)量一共為50個,恰逢市場對這兩種垃圾桶的售價進行調(diào)整,型垃圾桶售價比第一次購買時提高了8%,型垃圾桶按第一次購買時售價的9折出售,如果此次購買型和型這兩種垃圾桶的總費用不超過3240元,那么此次最多可購買多少個型垃圾桶?

查看答案和解析>>

同步練習(xí)冊答案