【題目】對于某一函數(shù)給出如下定義:若存在實數(shù),當其自變量的值為時,其函數(shù)值等于,則稱為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度為零.例如,圖1中的函數(shù)有0,1兩個不變值,其不變長度等于1

1)分別判斷函數(shù),有沒有不變值?如果有,請寫出其不變長度;

2)函數(shù),求其不變長度的取值范圍;

3)記函數(shù)的圖像為,將沿翻折后得到的函數(shù)圖像記為,函數(shù)的圖像由兩部分組成,若其不變長度滿足,求的取值范圍.

【答案】
1)不存在不變值;存在不變值,q=3;(20≤q≤2;(3≤m≤4 m-0.5


【解析】

1)由題意得:y=x-3=x,無解,故不存在不變值;y=x2-2=x,解得:x=2-1,即可求解;
2)由題意得:y=x2-bx+1=x,解得:x= ,即可求解;
3)由題意得:函數(shù)G的不變點為:2m-1+ 2m-1- 、0、4;分x=mG1的左側(cè)、x=mG1的右側(cè),兩種情況分別求解即可.

解:(1)由題意得:y=x-3=x,無解,故不存在不變值;
y=x2-2=x,解得:x=2-1,故存在不變值,q=2--1=3
2)由題意得:y=x2-bx+1=x,
解得:x=,
q=,1≤b≤3,
解得:0≤q≤2;
3)由題意得:y=x2-3x沿x=m對翻折后,
新拋物線的頂點為(2m-,-),
則新函數(shù)G2的表達式為:y=x2-4m-3x+4m2-6m),
y=x時,整理得:x2-4m-2x+4m2-6m=0,
x=2m-1±,
G2的不變點是2m-1+2m-1-;
G1的不變點是:04;
故函數(shù)G的不變點為:2m-1+2m-1-、0、4
4個不變點最大值的可能是2m-1+、4,最小值可能2m-1-0,
----x=mG1對稱軸x=的左側(cè)時,
①當最大值為2m-1+時,
當最小值為2m-1-時,
即:0≤2m-1+-2m-1-≤4,
解得:0≤m≤
當最小值為0時,
同理可得:0≤m≤;
②當最大值為4時,
最小值為2m-1-即可(最小值為0,符合條件),
0≤4-2m-1-≤4
解得:m=;
綜上:0≤m≤
----x=mG1對稱軸x=的右側(cè)時,
同理可得:≤m≤
故:≤m≤4 m-0.5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙的平均成績;

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加省比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點AB兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac0③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G是正方形ABCD對角線AC上一點,作GEADGFAB,垂足分別為點E、F.

求證:四邊形AFGE與四邊形ABCD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=12,點EBC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( 。

A. 18+36π B. 24+18π C. 18+18π D. 12+18π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ABy軸和x軸分別交于點A、點B,與反比例函數(shù)y在第一象限的圖像交于點C(1,6)、點D(3n).過點CCEy軸于E,過點DDFx軸于F

1)求mn的值;

2)求直線AB的函數(shù)解析式;

3)試證明:△AEC≌△DFB;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C1:y=x2﹣2x﹣,與x軸相交于A、B兩點(點A在點B的左邊),與y軸交于點C,已知M(4,0),點P是拋物線上的點,其橫坐標為6,點D為拋物線的頂點.

(1)求SABC

(2)點E、F是拋物線對稱軸上的兩動點,且已知E(2,a+)、F(2,a),當a為何值時,四邊形PEFM周長最。坎⒄f明理由.

(3)將拋物線C1繞點D旋轉(zhuǎn)180°后得到拋物線C2沿直線CD平移,平移后的拋物線交y軸于點Q,頂點為R,平移后是否存在這樣的拋物線,使△CRQ為等腰三角形?若存在,請求出此時拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CEAB于E,設(shè)ABC=α(60°≤α<90°).

(1)當α=60°時,求CE的長;

(2)當60°<α<90°時,

是否存在正整數(shù)k,使得EFD=kAEF?若存在,求出k的值;若不存在,請說明理由.

連接CF,當CE2﹣CF2取最大值時,求tanDCF的值.

查看答案和解析>>

同步練習冊答案