【題目】小明想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得ACF45°,再向前行走100米到點D處,測得BDF60°.若直線ABEF之間的距離為60米,求A、B兩點的距離(結(jié)果保留根號).

【答案】(40+)米

【解析】

AMEF于點M,作BNEF于點N,可以分別求得CM、DN的長,由于AB=CN-CM,從而可以求得AB的長.

AMEF于點M,作BNEF于點N,如圖所示:

由題意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,
CM= =60米,
DN= 米,
AB=CD+DN-CM=100+20-60=40+20)米,
A、B兩點的距離是(40+20)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點CD之間的距離是10厘米,張角∠CAB60°.

(1)求支點D到滑軌MN的距離(精確到1厘米);

(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.73,2.452.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AE,BF相交于點O,若四邊形ABEF的周長為40BF=10,則AE的長為________∠ABC=________°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形A1B1C1D1的邊長為2,∠A1B1C1=60°,對角線A1C1,B1D1相交于點O.以點O為坐標(biāo)原點,分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系.以B1D1為對角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點A1,A2,A3,…,An,則點An的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點.

(1)如圖1,求⊙O的半徑;

(2)如圖1,若點EBC的中點,連接PE,求PE的長度;

(3)如圖2,若點MBC邊上任意一點(不含B、C),以點M為直角頂點,在BC的上方作∠AMN=90°,交直線CP于點N,求證:AM=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bxA4,0),B1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H

1)求拋物線的表達(dá)式;

2)直接寫出點C的坐標(biāo),并求出△ABC的面積;

3)點P是拋物線上一動點,且位于第四象限,當(dāng)△ABP的面積為6時,求出點P的坐標(biāo);

4)若點M在直線BH上運動,點Nx軸上運動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知yxx>0)的函數(shù),表1中給出了幾組xy的對應(yīng)值:

1

x

1

2

3

y

6

3

2

1

⑴以表中各對對應(yīng)值為坐標(biāo),在圖1的直角坐標(biāo)系中描出各點,用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學(xué)過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;

⑵如果一次函數(shù)圖像與⑴中圖像交于(1,3)和(3,1)兩點,在第一、四象限內(nèi)當(dāng)x在什么范圍時,一次函數(shù)的值小于⑴中函數(shù)的值?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(  )

A. 當(dāng)ABBC時,它是菱形 B. 當(dāng)ACBD時,它是菱形

C. 當(dāng)∠ABC90°時,它是矩形 D. 當(dāng)ACBD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,一個圖形先向右平移a個單位,再繞原點按順時針方向旋轉(zhuǎn)θ角度,這樣的圖形運動叫作圖形的γ(a,θ)變換.

如圖,等邊ABC的邊長為1,點A在第一象限,點B與原點O重合,點Cx軸的正半軸上.A1B1C1就是ABC經(jīng)γ(1,180°)變換后所得的圖形.

ABC經(jīng)γ(1,180°)變換后得A1B1C1,A1B1C1經(jīng)γ(2,180°)變換后得A2B2C2,A2B2C2經(jīng)γ(3,180°)變換后得A3B3C3,依此類推……

An1Bn1Cn1經(jīng)γ(n,180°)變換后得AnBnCn,則點A1的坐標(biāo)是__,點A2018的坐標(biāo)是 

查看答案和解析>>

同步練習(xí)冊答案