【題目】已知菱形A1B1C1D1的邊長為2,∠A1B1C1=60°,對(duì)角線A1C1,B1D1相交于點(diǎn)O.以點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系.以B1D1為對(duì)角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對(duì)角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對(duì)角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)An的坐標(biāo)為____________

【答案】(3n-1,0)

【解析】試題分析:先根據(jù)菱形的性質(zhì),可求得A1的坐標(biāo)為(,0)然后根據(jù)相似菱形的性質(zhì)可得A2的坐標(biāo)為(,0),同理可得A3的坐標(biāo)為,0),……,則AN的坐標(biāo)為,0).

故答案為:,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知3x﹣2y﹣2=0,求8x÷4y÷22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,ABC=60°,E是對(duì)角線AC上一點(diǎn),F(xiàn)是線段BC延長線上一點(diǎn),且CF=AE,連接BE、EF。

(1)若E是線段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);

(2)若E是線段AC或AC延長線上的任意一點(diǎn),其它條件不變, 如圖2、圖3,線段BE、EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方體A的體積是正方體B的體積的27倍,那么正方體A的棱長是正方體B的棱長的( )
A.2倍
B.3倍
C.4倍
D.5倍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探究函數(shù)yx的圖象與性質(zhì)】

(1)函數(shù)yx的自變量x的取值范圍是________;

(2)下列四個(gè)函數(shù)圖象中,函數(shù)yx的圖象大致是________;

(3)對(duì)于函數(shù)yx,求當(dāng)x>0時(shí),y的取值范圍.請(qǐng)將下列的求解過程補(bǔ)充完整.

解:∵x>0,∴yx=()2+________.

≥0,∴y≥________.

【拓展運(yùn)用】

(4)若函數(shù)y,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,ABACAB為直徑的⊙OAC邊于點(diǎn)D,過點(diǎn)CCFAB與過點(diǎn)B的切線交于點(diǎn)F,連接BD.

(1)求證:BDBF;

(2)AB10,CD4,BC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2x+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求點(diǎn)A,B,C的坐標(biāo);

(2)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:201822019×2017_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.a2+a3=a5
B.a3a4=a12
C.a6÷a3=a2
D.4a﹣a=3a

查看答案和解析>>

同步練習(xí)冊(cè)答案