【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)BF為圓心,大于長為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長交BC于點(diǎn)E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AE,BF相交于點(diǎn)O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)

【答案】1)菱形;(2AE=10∠ABC=120°.

【解析】

試題(1)根據(jù)角平分線的畫法以及菱形的判定方法得出答案;(2)根據(jù)菱形的性質(zhì)得出AF的長度,然后根據(jù)勾股定理得出AE的長度,最后根據(jù)∠ABO的正弦值得出角度.

試題解析:(1)菱形

2)依題意,可知AE為角平分線,因?yàn)?/span>ABEF的周長為40,所以,AF10,

FO5,AO,所以,AE,

,所以,∠ABO120°∠ABC120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程組,以下結(jié)論:

時(shí),方程組的解也是方程的解;

②論取什么實(shí)數(shù),的值始終不變;

,則的最小值為;

請判斷以上結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,∠ACB=90°,且AC=1.過點(diǎn)C作直線l∥AB,P為直線l上一點(diǎn),且AP=AB.則點(diǎn)P到BC所在直線的距離是( )
A.1
B.1或
C.1或
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象,當(dāng)x取1,2,3,…n時(shí),對應(yīng)在反比例圖象上的點(diǎn)分別為M1、M2、M3…Mn , 則 + +… =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A城氣象臺(tái)測得臺(tái)風(fēng)中心在A城正西方向320km的B處,以每小時(shí)40km的速度向北偏東60°的BF方向移動(dòng),距離臺(tái)風(fēng)中心200km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.

(1)自己畫出圖形并解答:A城是否受到這次臺(tái)風(fēng)的影響?為什么?

(2)若A城受到這次臺(tái)風(fēng)影響,那么A城遭受這次臺(tái)風(fēng)影響有多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y= 圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若 = ,則b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,ABDB,∠ABD的平分線BEAD于點(diǎn)E,∠CDB的平分線DFBC于點(diǎn)F.求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線AC,BD交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是OB,OC上的動(dòng)點(diǎn).當(dāng)動(dòng)點(diǎn)E,F(xiàn)滿足BE=CF時(shí).

(1)寫出所有以點(diǎn)EF為頂點(diǎn)的全等三角形;(不得添加輔助線)

(2)求證:AEBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點(diǎn),以CD為一邊且在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE;

(2)延長BE至Q,P為BQ上一點(diǎn),連接CP、CQ使CP=CQ=5,若BC=8時(shí),求PQ的長.

查看答案和解析>>

同步練習(xí)冊答案