【題目】(1)如圖1,將兩個全等的三角板如圖擺放,其中△ABCΔADE的直角頂點重合在點A處,∠ADE=ABC=60°,且點DAC上,點BAE上,∠C=E=30°,AB=AD,AC=AE,BC=DEBCDE相交于點F.求證:CF=EF.

(2)如圖2,將這兩個三角板如圖擺放,直角頂點A仍然重合,BCDE相交于點F,ACDE交于點M,AEBC交于點N.猜想CFEF還相等嗎?說明理由.

(3)如圖3,在(2)的基礎(chǔ)上,若∠DAM=30°.求證:線段DFAC互相垂直平分.

【答案】1)見解析;(2)相等,理由見解析;(3)見解析

【解析】

1)根據(jù)AB=ADAC=AE得出CD=BE,進而求出△CDF≌△EBF.,即可得出答案;

2)根據(jù)題意求出∠BAN=DAM,進而證明△BAN≌△DAM,得出AN=AM,進一步求出CM=EN,再證明△CMF≌△ENF,即可得出答案;

3)連接AF,求出∠CAN=60°,證明ΔACF≌△AEF得到∠CAF=CAN=30°,再證△ADMΔAFM得到DM=FM,最后證△CFM≌△AFM得出AM=CM,即可得出答案.

(1)證明:AB=ADAC=AE

AC=AD=AE-AB

CD=EB

在△CDF和△EBF

∴△CDF≌△EBF

CF=EF

(2):相等.

理由如下:∵∠CAB=EAD-90°

CAB-CAE=EAD-CAE

∴∠BAN=DAM

在△BAN和△DAM

∴△BAN≌△DAM

AN=AM

AC-AM=AE-AD.

CM=EN

在△CMF和△ENF中∠C=E

∴△CMF≌△ENF

CF=EF

(3)證明:連接AF,

當∠DAM=30°時,∠AMD=180°-D-DAM=180°-60°-30°=90°

ACDF,即∠AMD=AMF=CMF=90°

CAN=DAE-DAM=90°-30=60°,

在△ACFΔAEF中,

ΔACF≌△AEF,

∴∠CAF=EAF

∴∠CAF=EAF=CAN=30°

在△ADM和△AFM

∴△ADMΔAFM

DM=FM,即AC平分DF

在△CFM和△AFM

∴△CFM≌△AFM

AM=CM,即DF平分AC,

綜上所述,ACDF互相垂直平分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,ACB=90°A=30°BDABC的角平分線, DEAB于點E

1)如圖1,連接EC,求證:EBC是等邊三角形;

2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作BMG=60°,MGDE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DGAD之間的數(shù)量關(guān)系;

3)如圖3,N是線段AD上的一點,以BN為一邊,在BN的下方作BNG=60°,NGDE延長線于點G,且MB=MG.試探究ND,DGAD數(shù)量之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,EAC的中點,AD平分∠BAC,BA:CA=2:3,ADBE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是菱形的對角線的交點,分別是、的中點.下列結(jié)論:①;②四邊形也是菱形;③四邊形的面積為;是軸對稱圖形.其中正確的結(jié)論有(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點、分別在、、上,且,

如果,那么四邊形________形;

如果的角平分線,那么四邊形________形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,能說明四邊形是菱形的有(

;②,;③;④,

A. B. C. D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形中,點是邊中點,點在邊上,且,設(shè)交于點,則的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應(yīng)國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從201671日起,居民用電實行一戶一表階梯電價,分三個檔次收費,第一檔是用電量不超過180千瓦時實行基本電價,第二、三檔實行提高電價,具體收費情況見折線圖,請根據(jù)圖象回答下列問題:

(1)當用電量是180千瓦時時,電費是___元;

(2)“基本電價___/千瓦時;

(3)小明家12月份的電費是328.5元,這個月他家用電多少千瓦時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).

(1)△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;

(2)△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到△A1B2C2,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2.

(3)連結(jié),請判斷的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案