【題目】如圖,在中,點、、分別在、、上,且,.
如果,那么四邊形是________形;
如果是的角平分線,那么四邊形是________形.
【答案】矩菱
【解析】
(1)根據(jù)平行線得出四邊形是平行四邊形,根據(jù)∠CAB=90°即可推出四邊形是矩形;
(2)首先得出平行四邊形,推出∠EDA=∠CAD=∠BAD,推出AE=DE,即可推出平行四邊形是菱形.
(1)解:四邊形AEDF是矩形,理由是:
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∵∠BAC=90°,
∴平行四邊形AEDF是矩形,
故答案是:矩.
(2)解:四邊形AEDF是菱形,理由是:
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∵AD是△ABC的角平分線,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠EDA=∠BAD,
∴AE=DE,
∴平行四邊形AEDF是菱形,
故答案是:菱.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)CD與⊙O有怎樣的位置關(guān)系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的、兩個頂點在軸上,頂點在軸的負(fù)半軸上.已知,,的面積,拋物線經(jīng)過、、三點.
求此拋物線的函數(shù)表達(dá)式;
點是拋物線對稱軸上的一點,在線段上有一動點,以每秒個單位的速度從向運動,(不與點,重合),過點作,交軸于點,設(shè)點的運動時間為秒,試把的面積表示成的函數(shù),當(dāng)為何值時,有最大值,并求出最大值;
設(shè)點是拋物線上異于點,的一個動點,過點作軸的平行線交拋物線于另一點.以為直徑畫,則在點的運動過程中,是否存在與軸相切的?若存在,求出此時點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,、為對角線,點、、、分別為、、、邊的中點,下列說法:
①當(dāng)時,、、、四點共圓.
②當(dāng)時,、、、四點共圓.
③當(dāng)且時,、、、四點共圓.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將兩個全等的三角板如圖擺放,其中△ABC和ΔADE的直角頂點重合在點A處,∠ADE=∠ABC=60°,且點D在AC上,點B在AE上,∠C=∠E=30°,AB=AD,AC=AE,BC=DE,BC和DE相交于點F.求證:CF=EF.
(2)如圖2,將這兩個三角板如圖擺放,直角頂點A仍然重合,BC與DE相交于點F,AC與DE交于點M,AE和BC交于點N.猜想CF和EF還相等嗎?說明理由.
(3)如圖3,在(2)的基礎(chǔ)上,若∠DAM=30°.求證:線段DF和AC互相垂直平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市“青山綠水”行動中,某社區(qū)計劃對面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,如果兩隊各自獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用6天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,社區(qū)要使這次綠化的總費用不超過40萬元,則至少應(yīng)安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點,連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,以AC為邊向外作△ACD,F為BC上一點,連結(jié)AF.
(1)如圖1,若∠ACD=90°,∠CAD=30°,CD=1,AB=BF=2,求FC的長度.
(2)如圖2,若AB=AC,延長DC交AF延長線于H點,且∠AHD=90°,∠BCH=∠CAD,連結(jié)BD交AF于M點,求證:CD=2MH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com