精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC 中,∠C=90°,A=34°,D,E 分別為 AB,AC 上一點,將△BCD,ADE 沿 CD,DE 翻折, A,B 恰好重合于點 P ,則∠ACP=_______________

【答案】22°

【解析】

根據折疊的性質即可得到 AD=PD=BD,根據 D AB 的中點,可得CD= AB=AD=BD,根據∠ACD=A=34°,BCD=B=56°,即可得出∠BCP=2BCD= 112°,即可得出∠ACP=112°﹣90°=22°.

由折疊可得,AD=PD=BD,

D AB 的中點,

CD=AB=AD=BD,

∴∠ACD=A=34°,BCD=B=56°,

∴∠BCP=2BCD=112°,

∴∠ACP=112°﹣90°=22°.

故答案為:22°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(1)如圖1,△ABC中,作∠ABC、∠ACB的平分線相交于點O,過點OEFBC分別交AB、ACE、F.

①求證:OE=BE.

②若△ABC的周長是25,BC=9,試求出△AEF的周長.

(2)如圖2,若∠ABC的平分線與∠ACB外角∠ACD的平分線相交于點P,連接AP,若∠BAC=80°,PAC的度數?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O直徑,點C在⊙O上,

AD平分∠CAB,BD是⊙O的切線,AD與BC相交于點E.

(1)求證:BD=BE;

(2)若DE=2,BD=,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.

(1)求經過B、E、C三點的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;

(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數y=(x>0)的圖象交于A(m,8),B(4,n)兩點.

(1)求一次函數的解析式;

(2)根據圖象直接寫出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE

1)若∠BAE=40°,求∠C的度數;

2)若△ABC周長為14cm,AC=6cm,求DC長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點D是BC的中點,點E在AD上.

(1)求證:BE=CE;

(2)如圖2,若BE的延長線交AC于點F,且BFAC,垂足為F,BAC=45°,原題設其它條件不變.求證:AEF≌△BCF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)課外興趣小組活動時,老師提出了如下問題:

如圖①,ABC中,若AB13,AC9,求BC邊上的中線AD的取值范圍.

小明在組內經過合作交流,得到了如下的解決方法:延長AD至點E,使DEAD,連接BE.請根據小明的方法思考:

Ⅰ.由已知和作圖能得到ADC≌△EDB,依據是   

ASSS BSAS CAAS DHL

Ⅱ.由三角形的三邊關系可求得AD的取值范圍是   

解后反思:題目中出現(xiàn)中點、中線等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集中到同一個三角形之中.

2)如圖②,ADABC的中線,BEACE,交ADF,且∠FAE=∠AFE.若AE4,EC3,求線段BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記ABM和CDN的面積和為S,則四邊形MQNP的面積為( 。

A. S B. S C. S D. S

查看答案和解析>>

同步練習冊答案