【題目】某公司員工分別住在A、B、C、D四個(gè)住宅區(qū),A區(qū)有20人,B區(qū)有15人,C區(qū)有5人,D區(qū)有30人,四個(gè)區(qū)在同一條直線上,位置如圖所示.該公司的接送車打算在此間設(shè)立一個(gè)停靠點(diǎn),為使所有員工步行到停靠點(diǎn)的路程之和最小,那么?奎c(diǎn)的位置應(yīng)設(shè)置在(  )

A. D區(qū) B. A區(qū) C. AB兩區(qū)之間 D. BC兩區(qū)之間

【答案】D

【解析】

根據(jù)題意分別計(jì)算?奎c(diǎn)分別在各點(diǎn)時(shí)員工步行的路程和,選擇最小的即可解答.

解:∵當(dāng)?奎c(diǎn)在D區(qū)時(shí),所有員工步行到停靠點(diǎn)路程和是:20×800+15×400+5×200=23000m;

當(dāng)?奎c(diǎn)在A區(qū)時(shí),所有員工步行到?奎c(diǎn)路程和是:15×400+5×600+30×800=33000m;

當(dāng)停靠點(diǎn)在AB兩區(qū)之間時(shí),設(shè)距離B區(qū)x米,所有員工步行到停靠點(diǎn)路程和是:20×(400-x)+15x+5×(200+x)+30×(400+x)=(30x+21000)m;

當(dāng)?奎c(diǎn)在BC兩區(qū)之間時(shí),設(shè)距離B區(qū)x米,所有員工步行到?奎c(diǎn)路程和是:20×(400+x)+15x+5×(200-x)+30×(400-x)=21000m.

∴當(dāng)?奎c(diǎn)在BC兩區(qū)之間時(shí),所有員工步行到?奎c(diǎn)路程和最小,那么?奎c(diǎn)的位置應(yīng)該在BC兩區(qū)之間.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+1過(guò)A(1,0)、B,(5,0)兩點(diǎn).

(1)求:拋物線的函數(shù)表達(dá)式;
(2)求:拋物線與y軸的交點(diǎn)C的坐標(biāo)及其對(duì)稱軸
(3)若拋物線對(duì)稱軸上有一點(diǎn)P,使△COA∽△APB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明去文具用品商店給同學(xué)買某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標(biāo)價(jià)都是1.50/支,但甲、乙兩商店的優(yōu)惠條件有所不同.甲商店:若購(gòu)買不超過(guò)10支,則按標(biāo)價(jià)付款;若一次性購(gòu)10支以上,則超過(guò)10支的部分按標(biāo)價(jià)的60%付款.乙商店:按標(biāo)價(jià)的80%付款.在水性筆的質(zhì)量等各種因素相同的條件下.

(1)設(shè)小明要購(gòu)買的該品牌水筆數(shù)是>10)支,請(qǐng)用含的代數(shù)式分別表示在甲、乙兩個(gè)商店購(gòu)買該品牌水性筆的費(fèi)用.

(2)若小明要購(gòu)買該品牌筆30支,你認(rèn)為在甲、乙兩商店中,到哪個(gè)商店購(gòu)買比較省錢?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

閱讀材料:

數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問(wèn)題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對(duì)值表示;

在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為|3﹣1|=2;

在數(shù)軸上,有理數(shù)5與﹣2對(duì)應(yīng)的兩點(diǎn)之間的距離為|5﹣(﹣2)|=7;

在數(shù)軸上,有理數(shù)﹣23對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣2﹣3|=5;

在數(shù)軸上,有理數(shù)﹣8與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣8﹣(﹣5)|=3;……

如圖1,在數(shù)軸上有理數(shù)a對(duì)應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對(duì)應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|a﹣b||b﹣a|,記為|AB|=|a﹣b|=|b﹣a|.

解決問(wèn)題:

(1)數(shù)軸上有理數(shù)﹣10與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離等于   ;數(shù)軸上有理數(shù)x與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為   ;若數(shù)軸上有理數(shù)x與﹣1對(duì)應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于   ;

聯(lián)系拓廣:

(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為﹣2,動(dòng)點(diǎn)P表示的數(shù)為x.

請(qǐng)從A,B兩題中任選一題作答,我選擇   題.

A.①若點(diǎn)P在點(diǎn)M,N兩點(diǎn)之間,則|PM|+|PN|=   

②若|PM|=2|PN|,即點(diǎn)P到點(diǎn)M的距離等于點(diǎn)P到點(diǎn)N的距離的2倍,則x等于   

B.①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x﹣4|=   ;

|x+2|+|x﹣4|═10,則x=   ;

②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)分別為A(-2,2),B(0,5),C(0,2).

(1)畫△,使它與△ABC關(guān)于點(diǎn)C成中心對(duì)稱;

(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),畫出平移后對(duì)應(yīng)的;

(3)若將繞某一點(diǎn)旋轉(zhuǎn)可得到,則旋轉(zhuǎn)中心的坐標(biāo)為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠D=135°,AD=6,CE=2,點(diǎn)P是線段AC上一動(dòng)點(diǎn),點(diǎn)F是線段AB上一動(dòng)點(diǎn),則PE+PF的最小值是(  。

A. 3 B. 6 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)求線段MN的長(zhǎng)度;

(2)根據(jù)第(1)題的計(jì)算過(guò)程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長(zhǎng)度;

(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:( ﹣2)÷ ,其中x=2sin60°+(3﹣π)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課上,小芳到操場(chǎng)上測(cè)量旗桿的高度,她的測(cè)量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C(如圖),然后沿BC方向走到D處,這時(shí)目測(cè)旗桿頂部A與竹竿頂部E恰好在同一直線上,又測(cè)得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,利用她所測(cè)數(shù)據(jù),求旗桿的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案