【題目】在平面直角坐標(biāo)系中,的頂點坐標(biāo)分別為,,.

1)求的面積.

2)若軸于點,請求出點的坐標(biāo).

【答案】18;(2)(0,0.8

【解析】

1)用一個長方形將△ABC框住,再用長方形的面積減去三個直角三角形的面積即可;

2)根據(jù)SDBCSABD =SABC,即可求出BD的長,從而求出D點坐標(biāo).

解:(1)用一個長方形將△ABC框住,如下圖所示,

SABC=5×4×3×2×2×5×2×4=8;

2)設(shè)過C點平行于x軸的網(wǎng)格線交y軸于點E

,

AO=2,OB=4,CE=3

SDBCSABD =SABC

BD·CEBD·AO=8

BD·3BD·2=8

解得:

OD= OBBD=0.8

D點坐標(biāo)為(0,0.8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人準(zhǔn)備玩?zhèn)髑蛴螒颍?guī)則是:第1次傳球從甲開始,甲先將球隨機(jī)傳給乙、丙兩人中的一個人,再由接到球的人隨機(jī)傳給其他兩人中的一個人…如此反復(fù).

(1)若傳球1次,球在乙手中的概率為   

(2)若傳球3次,求球在甲手中的概率(用樹狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了美化環(huán)境,計劃在一定的時間內(nèi)完成綠化面積萬畝的任務(wù),后來市政府調(diào)整了原定計劃,不但綠化面積要在原計劃的基礎(chǔ)上增加,而且要提前年完成任務(wù),經(jīng)測算要完成新的計劃,平均每年的綠化面積必須比原計劃多萬畝,求原計劃平均每年的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次中學(xué)生田徑運動會上,參加男子跳高的20名運動員成績?nèi)缦滤荆?/span>

成績(單位:米)

1.50

1.60

1.65

1.70

1.75

1.80

1.85

1.90

人數(shù)

2

3

2

4

5

2

1

1

則下列敘述正確的是( 。

A. 這些運動員成績的中位數(shù)是1.70

B. 這些運動員成績的眾數(shù)是5

C. 這些運動員的平均成績是1.71875

D. 這些運動員成績的中位數(shù)是1.726

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題.從下列四個條件:①ABBC;②∠ABC90°③ACBD;④AC⊥BD中選出兩個作為補(bǔ)充條件,使平行四邊形ABCD成為正方形(如圖所示).現(xiàn)有下列四種選法,你認(rèn)為其中錯誤的是( )

A. ①②B. ②④C. ①③D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價、售價如下表所示.

A

B

進(jìn)價(元/盞)

40

65

售價(元/盞)

60

100

(1)若該商場購進(jìn)這批臺燈共用去2500元,問這兩種臺燈各購進(jìn)多少盞?

(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進(jìn)B種臺燈多少盞?

(3)若該商場預(yù)計用不少于2500元且不多于2600元的資金購進(jìn)這批臺燈,為了打開B種臺燈的銷路,商場決定每售出一盞B種臺燈,返還顧客現(xiàn)金a元(10a20),問該商場該如何進(jìn)貨,才能獲得最大的利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠AOB是平角,∠AOC=30°,BOD=60°,OM,ON分別是∠AOC,BOD的平分線,∠MON等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD交于點O,已知OAC的中點,AE=CF,DFBE.

(1)求證:BOE≌△DOF;

(2)若OD=AC,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE平分∠ABCCD的延長線于點E,作CF⊥BEF

(1)求證:BF=EF;

(2)AB=8,DE=4,求平行四邊形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案