【題目】如圖,ABC中,∠C=90°,BD平分∠ABC,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好經(jīng)過點D

1)求證:直線AC是⊙O的切線;

2)若∠A=30°,⊙O的半徑是2,求線段CD的長.

【答案】1)詳見解析;(2CD=

【解析】

1)連接DO,根據(jù)圓的性質(zhì)及角平分線的性質(zhì)得到ODBC,再利用平行線的性質(zhì)得到∠ODA=C=90°,即可得到結(jié)論;

2)先根據(jù)∠A=30°求出OA得到ABBC,再設(shè)DC=x,DB=2x,利用勾股定理求出CD的長.

1)證明:連接DO,

BD平分∠ABC,

∴∠DBC=DBA

OD=OB,

∴∠ODB=DBA

∴∠ODB=DBC,

ODBC,

∴∠ODA=C=90°

∴直線AC是⊙O的切線;

2)在RtADO中,∠A=30°

AO=2DO=4

AB=4+2=6

BC=3

RtBCD中,

ABC=90°-30°=60°

∴∠DBC=DBA=30°

設(shè)DC=x,DB=2x

x2+9=4 x2,解之得,x =

CD=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE1.05米,求籃板下沿E點與地面的距離.(結(jié)果精確到01m,參考數(shù)據(jù):sin54°≈0.80 cos54°≈0.60,tan54°1.33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點AB重合)的任一點,點C、DO上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知:,,以斜邊AB的中點P為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )

A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的等邊△ABC中,ADBC邊上的中線,點E是△ABC內(nèi)一個動點,且DE2,將線段AE繞點A逆時針旋轉(zhuǎn)60°得到AF,則DF的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC各邊為邊分別向外作等邊三角形,編號為①、②、③,將②、①如圖所示依次疊在③上,已知四邊形EMNC與四邊形MPQN的面積分別為97,則斜邊BC的長為( 。

A.5B.9C.10D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年是決勝全面建成小康社會沖鋒之年,為進一步加快脫貧攻堅步伐,某市出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息回答下面的問題:

(1)求本次抽樣調(diào)查貧困戶總戶數(shù),并補全條形統(tǒng)計圖;

(2)若該地共有15000戶貧困戶,請估計至少得到3項幫扶措施的大約有多少戶;

(3)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用列表法或畫樹狀圖的方法,求出恰好選中甲和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已經(jīng)成為更多人的自主學(xué)習(xí)選擇.某校計劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機對本校部分學(xué)生進行了你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生3000人,請你估計該校對在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案