【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、D為⊙O上的兩點(diǎn),若∠APD=∠BPC,則稱(chēng)∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說(shuō)明理由;
(2)若的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫(xiě)出AP的長(zhǎng).
【答案】(1)∠CPD是直徑AB的“回旋角”,理由見(jiàn)解析;(2)“回旋角”∠CPD的度數(shù)為45°;(3)滿足條件的AP的長(zhǎng)為3或23.
【解析】
(1)由∠CPD、∠BPC得到∠APD,得到∠BPC=∠APD,所以∠CPD是直徑AB的“回旋角”;(2)利用CD弧長(zhǎng)公式求出∠COD=45°,作CE⊥AB交⊙O于E,連接PE,利用∠CPD為直徑AB的“回旋角”,得到∠APD=∠BPC,∠OPE=∠APD,得到∠OPE+∠CPD+∠BPC=180°,即點(diǎn)D,P,E三點(diǎn)共線,∠CED=∠COD=22.5°,
得到∠OPE=90°﹣22.5°=67.5°,則∠APD=∠BPC=67.5°,所以∠CPD=45°;(3)分出情況P在OA上或者OB上的情況,在OA上時(shí),同理(2)的方法得到點(diǎn)D,P,F在同一條直線上,得到△PCF是等邊三角形,連接OC,OD,過(guò)點(diǎn)O作OG⊥CD于G,
利用sin∠DOG,求得CD,利用周長(zhǎng)求得DF,過(guò)O作OH⊥DF于H,利用勾股定理求得OP,進(jìn)而得到AP;在OB上時(shí),同理OA計(jì)算方法即可
∠CPD是直徑AB的“回旋角”,
理由:∵∠CPD=∠BPC=60°,
∴∠APD=180°﹣∠CPD﹣∠BPC=180°﹣60°﹣60°=60°,
∴∠BPC=∠APD,
∴∠CPD是直徑AB的“回旋角”;
(2)如圖1,∵AB=26,
∴OC=OD=OA=13,
設(shè)∠COD=n°,
∵的長(zhǎng)為π,
∴
∴n=45,
∴∠COD=45°,
作CE⊥AB交⊙O于E,連接PE,
∴∠BPC=∠OPE,
∵∠CPD為直徑AB的“回旋角”,
∴∠APD=∠BPC,
∴∠OPE=∠APD,
∵∠APD+∠CPD+∠BPC=180°,
∴∠OPE+∠CPD+∠BPC=180°,
∴點(diǎn)D,P,E三點(diǎn)共線,
∴∠CED=∠COD=22.5°,
∴∠OPE=90°﹣22.5°=67.5°,
∴∠APD=∠BPC=67.5°,
∴∠CPD=45°,
即:“回旋角”∠CPD的度數(shù)為45°,
(3)①當(dāng)點(diǎn)P在半徑OA上時(shí),如圖2,過(guò)點(diǎn)C作CF⊥AB交⊙O于F,連接PF,
∴PF=PC,
同(2)的方法得,點(diǎn)D,P,F在同一條直線上,
∵直徑AB的“回旋角”為120°,
∴∠APD=∠BPC=30°,
∴∠CPF=60°,
∴△PCF是等邊三角形,
∴∠CFD=60°,
連接OC,OD,
∴∠COD=120°,
過(guò)點(diǎn)O作OG⊥CD于G,
∴CD=2DG,∠DOG=∠COD=60°,
∴DG=ODsin∠DOG=13×sin60°=
∴CD=,
∵△PCD的周長(zhǎng)為24+13,
∴PD+PC=24,
∵PC=PF,
∴PD+PF=DF=24,
過(guò)O作OH⊥DF于H,
∴DH=DF=12,
在Rt△OHD中,OH=
在Rt△OHP中,∠OPH=30°,
∴OP=10,
∴AP=OA﹣OP=3;
②當(dāng)點(diǎn)P在半徑OB上時(shí),
同①的方法得,BP=3,
∴AP=AB﹣BP=23,
即:滿足條件的AP的長(zhǎng)為3或23.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是反比例函數(shù)的圖象,點(diǎn),分別在圖象的兩支上,以為對(duì)角線作矩形且軸.
(1)當(dāng)線段過(guò)原點(diǎn)時(shí),分別寫(xiě)出與,與的一個(gè)等量關(guān)系式;
(2)當(dāng)、兩點(diǎn)在直線上時(shí),求矩形的周長(zhǎng);
(3)當(dāng)時(shí),探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】詩(shī)詞是我國(guó)古代文化中的瑰寶,某市教育主管部門(mén)為了解本市初中生對(duì)詩(shī)詞的學(xué)習(xí)情況,舉辦了一次“中華詩(shī)詞”背誦大賽,隨機(jī)抽取了部分同學(xué)的成績(jī)(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
組別 | 成績(jī)分組(單位:分) | 頻數(shù) |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合計(jì) | c |
根據(jù)以上信息解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“E”所對(duì)應(yīng)的圓心角的度數(shù)是 (度);
(3)若參加本次大賽的同學(xué)共有4000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>80分及以上的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖1,圖2分別是某款高壓電塔的實(shí)物圖和示意圖電塔的底座AB與地面平齊,DF表示電塔頂端D到地面的距離,已知AF的長(zhǎng)是2米,支架AC與地面夾角∠BAC=86°,頂端支架DC長(zhǎng)10米,DC與水平線CE之間夾角∠DCE=45°,求電塔的高度DF.(sin86°=0.998,cos86°=0.070,tan86°=14.300,≈1.4,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)C處有一個(gè)高空探測(cè)氣球,從點(diǎn)C處測(cè)得水平地面上A,B兩點(diǎn)的俯角分別為30°和45°.若AB=2km,則A,C兩點(diǎn)之間的距離為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在五四青年節(jié)來(lái)臨之際用2400元購(gòu)進(jìn)A,B兩種運(yùn)動(dòng)衫共22件.已知購(gòu)買(mǎi)A種運(yùn)動(dòng)衫與購(gòu)買(mǎi)B種運(yùn)動(dòng)衫的費(fèi)用相同,A種運(yùn)動(dòng)衫的單價(jià)是B種運(yùn)動(dòng)衫單價(jià)的1.2倍.
(1)求A,B兩種運(yùn)動(dòng)衫的單價(jià)各是多少元?
(2)若計(jì)劃用不超過(guò)5600元的資金再次購(gòu)進(jìn)A,B兩種運(yùn)動(dòng)衫共50件,已知A,B兩種運(yùn)動(dòng)衫的進(jìn)價(jià)不變.求A種運(yùn)動(dòng)衫最多能購(gòu)進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是上一點(diǎn)(不與A、B重合),點(diǎn)F是上一點(diǎn),連接OE,OF,分別與AB,BC交于點(diǎn)G,B,且∠EOF=90°.有下列結(jié)論:①=;②四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;③△GBH周長(zhǎng)的最小值為2+;④若BG=1﹣,則BG,GE,圍成的面積是,其中正確的是_____.(把所有正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)B、C的坐標(biāo);
(2)求△ABC的內(nèi)切圓半徑;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O,M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x>0)的圖象經(jīng)過(guò)A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為( )
A. 2B. 3C. 4D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com