【題目】如圖,在△ABC中,D,E,F(xiàn)分別是BC,AD,CE邊上的中點(diǎn),且S△ABC=16 cm2,則S△BEF=_________.
【答案】4cm2
【解析】
根據(jù)等底等高的三角形的面積相等用△ABC的面積表示出△BDE和△CDE的面積,從而得到△BCE的面積,再次利用等底等高的三角形的面積相等即可得到△BEF的面積與△ABC的面積的關(guān)系,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.
∵點(diǎn)D,E分別是BC,AD邊上的中點(diǎn),
∴S△ABD=S△ACD=S△ABC,
S△BDE=S△ABD=S△ABC,
S△CDE=S△ACD=S△ABC,
∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,
∵F是CE邊上的中點(diǎn),
∴S△BEF=S△BCE=×S△ABC=S△ABC,
∵S△ABC=16cm2,
∴S△BEF=×16=4cm2.
故答案為:4cm2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的逆命題,并判斷這對命題的真假.
(1)三邊對應(yīng)相等的兩個三角形全等;
(2)若a=b,則a2=b2;
(3)若∠α+∠β=180°,則∠α與∠β至少有一個是鈍角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),頂點(diǎn)M關(guān)于x軸的對稱點(diǎn)是M′.
(1)求拋物線的解析式;
(2)若直線AM′與此拋物線的另一個交點(diǎn)為C,求△CAB的面積;
(3)是否存在過A,B兩點(diǎn)的拋物線,其頂點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,使得四邊形APBQ為正方形?若存在,求出此拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎電瓶車,乙騎自行車從相距17km的兩地相向而行.
(1)甲、乙同時出發(fā)經(jīng)過0.5h相遇,且甲每小時行程是乙每小時行程的3倍少6km.求乙騎自行車的速度.
(2)若甲、乙騎行速度保持與(1)中的速度相同,乙先出發(fā)0.5h,甲才出發(fā),問甲出發(fā)幾小時后兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個,則錯誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)對2016年微信用戶的職業(yè)頒布進(jìn)行了隨機(jī)抽樣調(diào)查(職業(yè)說明:A:黨政機(jī)關(guān)、軍隊(duì),B:事業(yè)單位,C:企業(yè),D:自由職業(yè)及人體戶,E:學(xué)生,F(xiàn):其他),圖1和圖2是根據(jù)調(diào)查數(shù)據(jù)繪制而成的不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)該機(jī)構(gòu)共抽查微信用戶人;
(2)在圖1中,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在圖2中,“D”用戶所對應(yīng)扇形的圓心角度數(shù)為度;
(4)2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有億人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的三個頂點(diǎn)坐標(biāo)分別為A(-1,-2),B(1,1),C(-3,1),△A1B1C1是△ABC向下平移2個單位,向右平移3個單位得到的.
(1)寫出點(diǎn)A1、B1、C1的坐標(biāo),并在右圖中畫出△A1B1C1;
(2)求△A1B1C1的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com