【題目】如圖,公園有一條“Z”字形道路ABCD,其中ABCD,在EM,F處各有一個(gè)小石凳,E、F分別在ABCD上,且BE=CF,MBC的中點(diǎn),請(qǐng)問三個(gè)小石凳是否在一條直線上?說出你推斷的理由.

【答案】見解析

【解析】

根據(jù)題意可以轉(zhuǎn)化為證明,也就需要證明這兩個(gè)角所在的三角形全等.圍繞已知,找全等的條件.

三個(gè)小石凳在一條直線上.

證明如下:連接EM,MF

MBC中點(diǎn),

BM=MC.

又∵ABCD

∴∠EBM=FCM.

BEMCFM中,

BE=CFEBM=FCM,BM=CM,

BEMCFM(SAS),

∴∠BME=CMF,

又∠BMF+CMF=180

∴∠BMF+BME=180,

EM,F在一條直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭州地鐵1號(hào)線在2013年12月28日通車之前,為了解市民對(duì)地鐵票的定價(jià)意向,市物價(jià)局向社會(huì)公開征集定價(jià)意見.某學(xué)校課外小組也開展了“你認(rèn)為鄭州地鐵起步價(jià)定為多少合適?”的問卷調(diào)查,征求市民的意見,并將某社區(qū)市民的問卷調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖: 根據(jù)統(tǒng)計(jì)圖解答:
(1)同學(xué)們一共隨機(jī)調(diào)查了人;
(2)請(qǐng)你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)假定該社區(qū)有1萬人,請(qǐng)估計(jì)該社區(qū)支持“起步價(jià)為3元”的市民大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),四邊形ABCD是平行四邊形,BD是它的一條對(duì)角線,過頂點(diǎn)A、C分別作AM⊥BD,CN⊥BD,M,N為垂足.
(1)求證:AM=CN;
(2)如圖(2),在對(duì)角線DB的延長(zhǎng)線及反向延長(zhǎng)線上分別取點(diǎn)E,F(xiàn),使BE=DF,連接AE、CF,試探究:當(dāng)EF滿足什么條件時(shí),四邊形AECF是矩形?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),AOD=120, AOC=90,OE平分BOD,則圖中彼此互補(bǔ)的角共有(

A. 4對(duì) B. 5對(duì) C. 6對(duì) D. 7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】OB是∠AOC內(nèi)部一條射線,OM是∠AOB平分線,ON是∠AOC平分線,OP是∠NOA平分線,OQ是∠MOA平分線,則∠POQ∶∠BOC=( )

A. 1∶2 B. 1∶3 C. 2∶5 D. 1∶4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若一次函數(shù)的圖象與x軸的交于點(diǎn),與y軸交于點(diǎn)下列結(jié)論:①關(guān)于x的方程的解為;②x的增大而減;③關(guān)于x的方程的解為;④關(guān)于x的不等式的解為其中所有正確的為  

A. ①②③ B. ①③ C. ①②④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校招聘一名數(shù)學(xué)老師,對(duì)應(yīng)聘者分別進(jìn)行了教學(xué)能力、科研能力和組織能力三項(xiàng)測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)?nèi)缬冶恚海▎挝唬悍郑?/span>

教學(xué)能力

科研能力

組織能力

81

85

86

92

80

74

(1)若根據(jù)三項(xiàng)測(cè)試的平均成績(jī)?cè)诩住⒁覂扇酥袖浻靡蝗,那么誰(shuí)將被錄用?

(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織能力三項(xiàng)測(cè)試得分按 5:3:2 的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩、乙兩人中錄用一人,誰(shuí)將被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=
(1)作⊙O,使它過點(diǎn)A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,圓心角∠BOC=°,圓的半徑為 , 劣弧 的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC=2 ,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對(duì)角線AC上的B′處,則AB=

查看答案和解析>>

同步練習(xí)冊(cè)答案