【題目】已知數(shù)軸上有兩點A、B,點A對應的數(shù)是40,點B對應的數(shù)是.
求線段AB的長.
如圖2,O表示原點,動點P、T分別從B、O兩點同時出發(fā)向左運動,同時動點Q從點A出發(fā)向右運動,點P、T、Q的速度分別為5個單位長度秒、1個單位長度秒、2個單位長度秒,設運動時間為t.
求點P、T、Q表示的數(shù)用含有t的代數(shù)式表示;
在運動過程中,如果點M為線段PT的中點,點N為線段OQ的中點,試說明在運動過程中等量關系始終成立.
科目:初中數(shù)學 來源: 題型:
【題目】為了調查某小區(qū)居民的用水情況,隨機抽查了10戶家庭的月用水量,結果如下表:
月用水量(噸) | 4 | 5 | 6 | 9 |
戶數(shù) | 3 | 4 | 2 | 1 |
則關于這10戶家庭的月用水量,下列說法錯誤的是 ( )
A.中位數(shù)是5噸
B.眾數(shù)是5噸
C.極差是3噸
D.平均數(shù)是5.3噸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:﹣3﹣(﹣4)+7;
(2)計算:;
(3)計算:;
(4)計算:﹣14﹣(﹣2)2+6×(﹣);
(5)化簡:3x2+5x﹣5x2+3x;
(6)化簡:6(m2﹣n)﹣3(n+2m2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點.過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中△BCE繞點B旋轉,當A,B,E三點在同一直線上時(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉到圖3的位置時,(2)中的結論是否仍然成立?若成立,試證明之;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中點A(2,0),點P在射線 (x<0)上運動,設點P的橫坐標為a,以AP為直徑作⊙C,連接OP、PB,過點P作PQ⊥OP交⊙C于點Q.
(1)證明:∠AOP=∠BPQ;
(2)當點P在運動的過程中,線段PQ的長度是否發(fā)生變化,若變化,請用含a的代數(shù)式表示PQ的長;若不變,求出PQ的長;
(3)當tan∠APO= 時,①求點Q坐標;②點D是圓上任意一點,求QD+ OD的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點在格點上.
(1)作出△ABC關于y軸對稱的△A1B1C1;
(2)直接寫出△ABC關于x軸對稱的△A2B2C2的各點坐標;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理過程,請你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁內角互補,兩直線平行)
∴∠BAE= (兩直線平行,內錯角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (內錯角相等,兩直線平行)
∴∠M=∠N(兩直線平行,內錯角相等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A、B兩點在數(shù)軸上對應的數(shù)分別為﹣12和4.
(1)直接寫出A、B兩點之間的距離;
(2)若在數(shù)軸上存在一點P,使得AP=PB,求點P表示的數(shù).
(3)如圖2,現(xiàn)有動點P、Q,若點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左運動,當點Q到達原點O后立即以每秒3個單位長度的速度沿數(shù)軸向右運動,求:當OP=4OQ時的運動時間t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在第1個△ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1到A2,使得A1A2=A1C;在A2C上取一點D,延長A1A2到A3,使得A2A3=A2D;…,按此做法進行下去,第n個三角形的以An為頂點的內角的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com