【題目】如圖,在平行四邊形ABCD中,∠BAD=110°,將四邊形BCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到平行四邊形AB′C′D′的位置,旋轉(zhuǎn)角α(0°<α<70°),若C′D′恰好經(jīng)過(guò)點(diǎn)D,則α的度數(shù)為 .
【答案】40°
【解析】解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠ADC+∠BAD=180°,
∴∠ADC=180°﹣110°=70°,
由旋轉(zhuǎn)的性質(zhì)得:AD′=AD,∠D′=∠ADC=70°,
∴∠ADD′=∠D′=70°,
∴∠α=180°﹣2×70°=40°;
所以答案是:40°.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角和平行四邊形的性質(zhì),需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,則下列結(jié)論:
① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購(gòu)進(jìn)一批籃球和足球.其中籃球的單價(jià)比足球的單價(jià)多40元,用1500元購(gòu)進(jìn)的籃球個(gè)數(shù)與900元購(gòu)進(jìn)的足球個(gè)數(shù)相等.
(1)籃球和足球的單價(jià)各是多少元?
(2)該校打算用1000元購(gòu)買(mǎi)籃球和足球,問(wèn)恰好用完1000元,并且籃球、足球都買(mǎi)有的購(gòu)買(mǎi)方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題,如圖,正方形ABCD。
(1)請(qǐng)?jiān)趫D①中作兩條直線(xiàn),使它們將正方形ABCD的面積三等分;
(2)如圖②,在矩形ABCD中,AB=6,BC=9,在圖②中過(guò)頂點(diǎn)A作兩條直線(xiàn),使它們將矩形ABCD的面積三等分,井說(shuō)明理由;
(3)如圖③,農(nóng)博園有一塊不規(guī)則的五邊形ABCDE空地,其中AB∥CD、AE∥BC,AB=AC=100米,AE=160米,BC=120米,CD=62.5米,根據(jù)視覺(jué)效果和花期特點(diǎn),農(nóng)博園設(shè)計(jì)部門(mén)想在這片空地種上等面積的三種不同的花,要求從入口A(yíng)點(diǎn)處修兩條筆直的小路(小路的面積忽略不計(jì))方便游客賞花,兩條小路將這塊地面積三等分.請(qǐng)通過(guò)計(jì)算畫(huà)圖說(shuō)明其設(shè)計(jì)部們能否實(shí)現(xiàn),若能實(shí)現(xiàn)請(qǐng)確定小路盡頭的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,若∠ADP=∠α,∠BCP=∠β,射線(xiàn)OM上有一動(dòng)點(diǎn)P.
(1)當(dāng)點(diǎn)P在A,B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由
(2)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD與∠α、∠β之間的何數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,花果山上有兩只猴子在一棵樹(shù)CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹(shù)爬下走到離樹(shù)10m處的池塘A處,另一只猴子乙先爬到樹(shù)頂D處后再沿纜繩DA線(xiàn)段滑到A處.已知兩只猴子所經(jīng)過(guò)的路程相等,設(shè)BD為xm.
(1)請(qǐng)用含有x的整式表示線(xiàn)段AD的長(zhǎng)為______m;
(2)求這棵樹(shù)高有多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(,0),(3,0).現(xiàn)將線(xiàn)段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線(xiàn)段AB的對(duì)應(yīng)線(xiàn)段CD,連接AC,BD.
(1)點(diǎn)C,D的坐標(biāo)分別為_______, ________,并求出四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上存在一點(diǎn)P,連接PA,PB,且S△PAB =S四邊形ABDC,求出滿(mǎn)足條件的所有點(diǎn)P的坐標(biāo).
(3)若點(diǎn)Q為線(xiàn)段BD上一點(diǎn)(不與B,D兩點(diǎn)重合),則的值______(填“變”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線(xiàn)段,CD為雙曲線(xiàn)的一部分):
(1)求出線(xiàn)段AB,曲線(xiàn)CD的解析式,并寫(xiě)出自變量的取值范圍;
(2)開(kāi)始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)E作EF⊥AD于F,交拋物線(xiàn)于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com