【題目】如圖所示,在等腰Rt△ABC中,∠CAB=90°,P是△ABC內(nèi)一點(diǎn),將△PAB繞A逆時(shí)針旋轉(zhuǎn)90°得△DAC.
(1)試判斷△PAD的形狀并說(shuō)明理由;
(2)連接PC,若∠APB=135°,PA=1,PB=3,求PC的長(zhǎng).
【答案】(1)△PAD為等腰直角三角形,理由見(jiàn)解析;(2)CP= .
【解析】
(1)結(jié)論:△PAD是等腰直角三角形.只要證明∠DAP=90° ,PA=DA,即可解決問(wèn)題
(2))由△BAP≌△CAD,推出PB=CD=3,∠APB=∠ADC=135°,由△PAD是等腰直角三角形,推出∠ADP=45°,∠PDC=135°-∠ADP=90°,由AP=AD=1,推出PD=AP+AD=2,在Rt△PDC中,根據(jù)PC= 計(jì)算即可,
(1)△PAD為等腰直角三角形。理由如下:
將△PAB繞A逆時(shí)針旋轉(zhuǎn)90°得△DAC
∠DAP=90° ,PA=DA
△PAD為等腰直角三角形
(2)由旋轉(zhuǎn)知
∠CDA=∠APB=135°,∠ADP=45°,CD=PB=3,
∠CDP=135°-∠ADP=90°
∴CD⊥PD
∴PD=AP+AD=2
在Rt△PDC中
CP=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等腰直角三角形,AB=AC,D為平面內(nèi)的任意一點(diǎn),且滿足CD=AC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點(diǎn)E在BC上,(不與B、C重合),FM⊥AD,交射線AD于點(diǎn)M.
(1)如圖1,當(dāng)點(diǎn)E在邊BC的延長(zhǎng)線上,點(diǎn)M在邊AD上時(shí),請(qǐng)直接寫(xiě)出線段AB,BE,AM之間的數(shù)量關(guān)系,不需要證明.
(2)如圖2,當(dāng)點(diǎn)E在邊BC上,點(diǎn)M在邊AD的延長(zhǎng)線上時(shí),請(qǐng)寫(xiě)出線段AB,BE,AM之間的數(shù)量關(guān)系,并且證明你的結(jié)論.
(3)如圖3,當(dāng)點(diǎn)E在邊CB的延長(zhǎng)線上,點(diǎn)M在邊AD上時(shí),若BE=,∠AFM=15°,求AM的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫(xiě)出y≥0時(shí)x的取值范圍;
(2)把點(diǎn)B向上平移m個(gè)單位得點(diǎn)B1.若點(diǎn)B1向左平移n個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+6)個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“2019大洋灣鹽城馬拉松”的賽事共有三項(xiàng):A,“全程馬拉松”、B,“半程馬拉松”、C.“迷你健身跑”,小明和小剛參與了該項(xiàng)賽事的志愿者服務(wù)工作,組委會(huì)隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組.
(1)小明被分配到“迷你健身跑”項(xiàng)目組的概率為 ;
(2)求小明和小剛被分配到不同項(xiàng)目組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“我最喜愛(ài)的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖,請(qǐng)結(jié)合以上信息解答下列問(wèn)題:
(1)求m的值;
(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為多少度?
(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有多少名學(xué)生最喜愛(ài)足球活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求a和b的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng)t天后的質(zhì)量為m(kg),銷(xiāo)售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額-總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓寬學(xué)生視野,我市某中學(xué)決定組織部分師生去廬山西海開(kāi)展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒(méi)人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.為了安全,既要保證所有師生都有車(chē)坐,又要保證每輛客車(chē)上至少要有2名老師.現(xiàn)有甲、乙兩種大客車(chē),它們的載客量和租金如表所示.
甲種客車(chē) | 乙種客車(chē) | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
(1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?租用客車(chē)總數(shù)為多少輛?
(2)設(shè)租用x輛乙種客車(chē),租車(chē)總費(fèi)用為w元,請(qǐng)寫(xiě)出w與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車(chē)總費(fèi)用不超過(guò)3100元,租用乙種客車(chē)不少5輛,你能得出哪幾種不同的租車(chē)方案?其中哪種租車(chē)方案最省錢(qián)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com