【題目】如圖,⊙O中,=,∠ABC=75°,BC=2,則圖中陰影部分的面積是( ).
A.2+B.2+C.4+D.+
【答案】A
【解析】
根據(jù)圓的基本性質(zhì)可得:AB=AC,從而得出:點A在BC的中垂線上,∠ABC=∠ACB=75°,根據(jù)三角形內(nèi)角和定理,可求出∠BAC,根據(jù)圓周角定理可求出∠BOC,從而判定△OBC是等邊三角形,同時可證:AD垂直平分BC,從而求出∠BOD,求出AD,然后利用S陰影=S△ABC+S扇形OBC-S△OBC即可求出陰影面積.
解:連接AO并延長交BC于D,連接OB、OC,如下圖所示
∵=
∴AB=AC
∴點A在BC的中垂線上,∠ABC=∠ACB=75°
∴∠BAC=180°-∠ABC-∠ACB=30°
∴∠BOC=60°
∵OB=OC
∴△OBC是等邊三角形,點O在BC的中垂線上
∴OB=OC=BC=2,AD垂直平分BC
∴OA=OB=2,OD平分∠BOC
∴∠BOD=∠BOC=30°
∴OD=OB·cos∠BOD=
∴AD=AO+OD=2+
∴S陰影=S△ABC+S扇形OBC-S△OBC
=AD·BC+-OD·BC
=×(2+)×2+-××2
=2+
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】荊州市某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:(1≤t≤80,t為整數(shù)),日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量y與時間t的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線的頂點坐標為(2,1),與y軸交于點(0,3).求
(1)這條拋物線的表達式;
(2)直接寫出當1<x<5時,y的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小敏的爸爸是一家水果店的經(jīng)理.一天,他去水果批發(fā)市場,用100元購進甲種水果,用100元購進乙種水果,已知乙種水果比甲種水果多10千克,乙種水果的批發(fā)價比甲種水果的批發(fā)價低0.5元.
(1)求甲、乙兩種水果各購進了多少千克?
(2)如果當天甲、乙兩種水果都按2.80元出售,乙種水果很快售完,而甲種水果先售出,剩余的按售價打5折售完.請你通過計算,說明這一天的水果買賣是否賺錢?如果賺錢,賺了多少元?如果不賺錢,那么賠了多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在BC邊上,AE與BD交于點F,∠BAE=∠ADB.
(1)圖中與△ABF相似的三角形(不包括△ABF本身)共有_____個.
(2)若BE=2,AD=5.求:AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠POQ=60°,點A、B分別在射線OQ、OP上,且OA=2,OB=4,∠POQ的平分線交AB于C,一動點N從O點出發(fā),以每秒1個單位長度的速度沿射線OP向點B作勻速運動,MN⊥OB交射線OQ于點M.設(shè)點N運動的時間為t(0<t<2)秒.
(1)求證:△ONM∽△OAB;
(2)當MN=CM時,求t的值;
(3)設(shè)△MNC與△OAB重疊部分的面積為S.請求出S關(guān)于t的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于O,AD⊥BC.垂足為D.
(1)如圖1,若,BD=DC,求∠B的度數(shù).
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點F,過點B作BG∥AD交⊙O于點G,在AB邊上取一點H,使得AH=BG;
①連接CG,試探究∠ABC,∠ACG的數(shù)量關(guān)系,并給予證明.
②求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,由8個面積均為1的小正方形組成的L型模板如圖放置,則矩形ABCD的周長為( 。
A.12B.10C.8D.8+4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com