【題目】如圖,O的半徑OC=10cm,直線lCO,垂足為H,交O于A,B兩點,AB=16cm,直線l平移多少厘米時能與O相切?

【答案】直線AB向左移4cm,或向右平移16cm時與圓相切.

【解析】

試題分析:連接OA,延長CO交O于D,由垂徑定理得OC平分AB.AH=8,由勾股定理可得OH=6,求得CH=4cm,DH=16cm.

解法1:如圖,連接OA,延長CO交O于D,

lOC,

OC平分AB,

AH=8,

在RtAHO中,,

CH=4cm,DH=16cm.

答:直線AB向左移4cm,或向右平移16cm時與圓相切.

解法2:設(shè)直線AB平移xcm時能與圓相切,(10﹣x)2+82=102

x1=16,x2=4,

CH=4cm,DH=16cm.

答:直線AB向左移4cm,或向右平移16cm時與圓相切.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中:①A+B=C;②A=B=2C;③A=B=αC;④ABC=1﹕2﹕3中能確定ABC為直角三角形的條件有( )

A.2個 B.3個 C.4個 D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=ECD=90°,點DAB邊上的一點,

1)試說明:EAC=B;

2)若AD=10BD=24,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(PB、C不重合),連接AP,過點BBQAPCD于點Q,將BQC沿BQ所在的直線對折得到BQC′,延長QC′BA的延長線于點M

1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

2)當AB=3BP=2PC,求QM的長;

3)當BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把多項式﹣16x3+40x2y提出一個公因式﹣8x2后,另一個因式是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,4),與直線y=﹣x+1相交于A、B兩點,其中點A在y軸上,過點B作BCx軸,垂足為點C(﹣3,0).點M是直線AB上方的拋物線上一動點,過M作MP丄x軸,垂足為點P,交直線AB于點N,設(shè)點M的橫坐標為m.

(1)求拋物線的解析式;

(2)當m為何值時,線段MN取最大值?并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打笫一場比賽.

(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率;

(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的內(nèi)角和是外角和的2倍,則這個多邊形是( 。

A. 四邊形 B. 五邊形 C. 六邊形 D. 八邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的一個外角小于和它相鄰的內(nèi)角,那么這個三角形為( )

A.鈍角三角形 B.銳角三角形 C.直角三角形 D.以上都不對

查看答案和解析>>

同步練習冊答案