【題目】如圖,已知直線AB經(jīng)過⊙O上的點(diǎn)C,并且OAOB,CACB,

1)求證:直線AB是⊙O的切線;

2OAOB分別交⊙O于點(diǎn)D,EAO的延長(zhǎng)線交⊙O于點(diǎn)F,若AB4AD,求sinCFE的值.

【答案】1)見解析;(2

【解析】

1)根據(jù)等腰三角形性質(zhì)得出OCAB,根據(jù)切線的判定得出即可;

2)連接OCDC,證△ADC∽△ACF,求出AF=4xCF=2DC,根據(jù)勾股定理求出DC=x,DF=3x,解直角三角形求出sinAFC,即可求出答案.

1)證明:連接OC,如圖1,

OAOBACBC,

OCAB,

OCO,

∴直線AB是⊙O的切線;

2)解:連接OCDC,如圖2,

AB4AD,

∴設(shè)ADx,則AB4x,ACBC2x,

DF為直徑,

∴∠DCF90°,

OCAB,

∴∠ACO=∠DCF90°,

∴∠OCF=∠ACD90°﹣∠DCO

OFOC,

∴∠AFC=∠OCF,

∴∠ACD=∠AFC,

∵∠A=∠A,

∴△ADC∽△ACF,

,

AF2AC4x,FC2DC

ADx,

DF4xx3x,

RtDCF中,(3x2DC2+2DC2,

解得:DCx,

OAOB,ACBC,

∴∠AOC=∠BOC,

,

∴∠CFE=∠AFC

sinCFEsinAFC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF90°BEEF,連接DFGDF的中點(diǎn),連接EG,CG,EC

1)問題發(fā)現(xiàn):如圖1,若點(diǎn)ECB的延長(zhǎng)線上,直接寫出EGGC的位置關(guān)系及的值;

1)操作探究:將圖1中的△BEF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖2所示位置,請(qǐng)問(1)中所得的結(jié)論是否仍然成立?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由;

2)解決問題:將圖1中的△BEF繞點(diǎn)B順時(shí)針旋轉(zhuǎn),若BE1,AB,當(dāng)E,FD三點(diǎn)共線時(shí),請(qǐng)直接寫出CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,以為直徑的交邊于點(diǎn),相切.

1)若,求證:;

2)點(diǎn)上一點(diǎn),點(diǎn)兩點(diǎn)在的異側(cè).若,,求半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD2ABFAD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EFCF,則下列結(jié)論中一定成立的是_____(把所有正確結(jié)論的序號(hào)部填在橫線上).AEFDFESBEC2SCEF;EFCFBCD2DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新區(qū)一中為了了解同學(xué)們課外閱讀的情況,現(xiàn)對(duì)初三某班進(jìn)行了“你最喜歡的課外書籍類別”的問卷調(diào)查.用“"表示小說類書籍,“”表示文學(xué)類書籍,“”表示傳記類書籍,“”表示藝術(shù)類書籍.根據(jù)問卷調(diào)查統(tǒng)計(jì)資料繪制了如下兩副

不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問題:

1)本次問卷調(diào)查,共調(diào)查了    名學(xué)生,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)在接受問卷調(diào)查的學(xué)生中,喜歡“”的人中有2名是女生,喜歡“”的人中有2名是女生,現(xiàn)分別從喜歡這兩類書籍的學(xué)生中各選1名進(jìn)行讀書心得交流,請(qǐng)用畫樹狀圖或列表法求出剛好選中2名是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)拋擲三枚一元的硬幣,如果至少一枚硬幣正面朝上,那么至少一枚反面朝上的概率是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于點(diǎn)和點(diǎn)

1)求直線和反比例函數(shù)的解析式;

2)若直線軸、軸分別交于點(diǎn),嘉淇認(rèn)為,請(qǐng)通過計(jì)算說明她的觀點(diǎn)是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yx2+bx+cx軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x2,點(diǎn)A的坐標(biāo)為(1,0).

1)求該拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)點(diǎn)P為拋物線上一點(diǎn)(不與點(diǎn)A重合),連接PC.當(dāng)∠PCB=∠ACB時(shí),求點(diǎn)P的坐標(biāo);

3)在(2)的條件下,將拋物線沿平行于y軸的方向向下平移,平移后的拋物線的頂點(diǎn)為點(diǎn)D,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,當(dāng)ODDQ時(shí),求拋物線平移的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案