【題目】如圖,在ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是_____(把所有正確結(jié)論的序號(hào)部填在橫線上).①∠AEF=∠DFE;②S△BEC=2S△CEF;③EF=CF;④∠BCD=2∠DCF.
【答案】①③④.
【解析】
延長EF,交CD延長線于M,根據(jù)題意通過“角邊角”證明△AEF≌△DMF,得到EF=MF,∠AEF=∠M,在Rt△CEM中根據(jù)斜邊上的中線等于斜邊的一半可得CF=EM=EF,故③正確;易得S△EFC=S△CFM,因?yàn)?/span>MC>BE,所以S△BEC≤2S△EFC故②錯(cuò)誤;設(shè)∠FEC=x,則∠FCE=x,整理可得∠EFD=270°﹣3x,而∠AEF=90°﹣x,故可得①正確;根據(jù)平行四邊形與平行線的性質(zhì)可證④正確.
解:延長EF,交CD延長線于M,如圖所示:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點(diǎn),
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴EF=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴CF=EM=EF,故③正確;
∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC≤2S△EFC
故②S△BEC=2S△CEF錯(cuò)誤;
設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,
∴∠AEF=∠DFE,①正確;
∵F是AD的中點(diǎn),
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴2∠DCF=∠BCD,④正確.
故答案為:①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,以CD為直徑作⊙O分別交AC,BC于點(diǎn)E,F,過點(diǎn)E作⊙O的切線,分別交直線BC,AB于點(diǎn)H,G.
(1)求證:HG=GB;
(2)若⊙O的直徑為4,連接OG,交⊙O于點(diǎn)M.填空:
①連接OE,ME,DM.當(dāng)EG=____時(shí),四邊形OEMD為菱形;
②連接OE.當(dāng)EG=_________時(shí),四邊形OEAG為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合)我們把這樣的兩拋物線L1、L2互稱為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有很多條.
(1)如圖2,已知拋物線L3:y=2x2-8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對稱軸對稱的對稱點(diǎn)D的坐標(biāo);
(2)請求出以點(diǎn)D為頂點(diǎn)的L3的“友好”拋物線L4的解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1(x-m)2+n的任意一條“友好”拋物線的解析式為y=a2(x-h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣10經(jīng)過點(diǎn)A(12,0)和B(a,﹣5),雙曲線y=經(jīng)過點(diǎn)B.
(1)求直線y=kx﹣10和雙曲線y=的函數(shù)表達(dá)式;
(2)點(diǎn)C從點(diǎn)A出發(fā),沿過點(diǎn)A與y軸平行的直線向下運(yùn)動(dòng),速度為每秒1個(gè)單位長度,點(diǎn)C的運(yùn)動(dòng)時(shí)間為t(0<t<12),連接BC,作BD⊥BC交x軸于點(diǎn)D,連接CD,
①當(dāng)點(diǎn)C在雙曲線上時(shí),求t的值;
②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值.
③當(dāng)DC=時(shí),請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,
(1)求證:直線AB是⊙O的切線;
(2)OA,OB分別交⊙O于點(diǎn)D,E,AO的延長線交⊙O于點(diǎn)F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在中,,求的面積.
問題探究
(2)如圖②,半圓的直徑,是半圓的中點(diǎn),點(diǎn)在上,且,點(diǎn)是上的動(dòng)點(diǎn),試求的最小值.
問題解決
(3)如圖③,扇形的半徑為在選點(diǎn),在邊上選點(diǎn),在邊上選點(diǎn),求的長度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)為中點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā),沿方向以每秒個(gè)單位長度的速度向終點(diǎn)運(yùn)動(dòng),點(diǎn)關(guān)于點(diǎn)對稱點(diǎn)為點(diǎn),以為邊向上作正方形.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)_______秒時(shí),點(diǎn)落在邊上.
(2)設(shè)正方形與重疊部分面積為,當(dāng)點(diǎn)在內(nèi)部時(shí),求關(guān)于的函數(shù)關(guān)系式.
(3)當(dāng)正方形的對角線所在直線將的分為面積相等的兩部分時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,對角線BD平分∠ABC,且BD⊥DC,E為BC中點(diǎn),AB=DE.
(1)求證:四邊形ABED是菱形;
(2)若∠C=60°,CD=4,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com