精英家教網 > 初中數學 > 題目詳情

【題目】定義:如果一個分式能化成一個整式與一個分子為常數的分式的和的形式,則稱這個分式為和諧分式.如:,則都是和諧分式

1)下列分式中,不屬于和諧分式的是 (填序號).

2)將和諧分式化成一個整式與一個分子為常數的分式的和的形式.

3)應用:先化簡,并求取什么整數時,該式的值為整數.

【答案】1)②;(2;(3,當時,該式的值為整數

【解析】

1)把給出的各式進行處理,根據和諧分式的定義判斷;

2)把分式先變形為,再寫成整式與分式分子為常數的形式;

3)先算除法,把分式轉化成和諧分式,再確定x的值.

解:(1)①;②;③;④;

∴①③④屬于和諧分式,②不屬于和諧分式;

故答案為:②;

2)原式;

3)原式

;

根據題意得:原式;

當原式的值為整數時,應該是2的因數,

解得:,

∴當時,該式的值為整數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應關系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為 km.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新農村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000/2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為1202

若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價8%,另外每套樓房贈送a元裝修基金;

方案二:降價10%,沒有其他贈送.

1)請寫出售價y(元/2)與樓層x1≤x≤23,x取整數)之間的函數關系式;

2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,從邊長為a的正方形紙片中減去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積= ).

(1)設圖1中陰影部分面積為S1,圖2中陰影部分面積為S2,請直接用含a、b的式子表示S1和S2;

(2)請寫出上述過程所揭示的乘法公式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小剛同學動手剪了如圖所示的正方形與長方形紙片若干張

(1)他用1張1號、1張2號和2張3號卡片拼出一個新的圖形(如圖根據這個圖形的面積關系寫出一個你所熟悉的乘法公式,這個乘法公式是 ;

(2)如果要拼成一個長為(a+2b),寬為(a+b)的大長方形,則需要2號卡片 張,3號卡片 張;

(3)當他拼成如圖所示的長方形,根據6張小紙片的面積和等于打紙片(長方形)的面積可以把多項式a2+3ab+2b2分解因式,其結果是 ;

(4)動手操作,請你依照小剛的方法,利用拼圖分解因式a2+5ab+6b2= 畫出拼圖

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場計劃用元從廠家進臺新型電子產品,已知該廠家生產甲、乙、丙三種不同型號的電子產品,其中甲型/臺,每臺獲利元;乙型/臺,每臺獲利元;丙型/臺,每臺獲利元.設甲、乙型設備應各買入,臺:

1)購買丙型設備 臺(用含,的代數式表示);

2)若商場同時購進三種不同型號的電子產品(每種型號至少有一臺),恰好用了元,則商場有哪幾種購進方案?

3)在第(2)題的基礎上,為了使銷售時獲利最多,應選擇哪種購進方案?此時獲利為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長方形 BCDE 的各邊分別平行于 x 軸或 y 軸,物體甲和物體乙分別由點 A2,0)同時出發(fā),沿長方形 BCDE 的邊作環(huán)繞運動,物體甲按逆時針方向以 1 個單位/秒勻速運動,物體乙按順時針方向以 2 個單位/秒勻速運動,則兩個物體運動后的第 2020 次相遇地點的坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點A,B(點A在點B左邊),與y軸交于點C,拋物線l2經過點A,與x軸的另一個交點為E(4,0),與y軸交于點D(0,﹣2).

(1)求拋物線l2的解析式;
(2)點P為線段AB上一動點(不與A、B重合),過點P作y軸的平行線交拋物線l1于點M,交拋物線l2于點N.
①當四邊形AMBN的面積最大時,求點P的坐標;
②當CM=DN≠0時,求點P的坐標.

查看答案和解析>>

同步練習冊答案