【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),對(duì)稱(chēng)軸為直線,給出以下結(jié)論:
①;②;③;④若M(-3,)、N(6,)為函數(shù)圖象上的兩點(diǎn),則,其中正確的是____________.(只要填序號(hào))
【答案】①②③
【解析】
①根據(jù)函數(shù)圖像的開(kāi)口、對(duì)稱(chēng)軸以及與y軸的交點(diǎn)可得出a、b、c的正負(fù),即可判斷正誤;
②根據(jù)函數(shù)對(duì)稱(chēng)軸可得出a、b之間的等量關(guān)系,將轉(zhuǎn)化為,再由函數(shù)與x軸的交點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),可得出另一個(gè)交點(diǎn)是(-1,0),即可得出的結(jié)果,即可判斷正誤;
③根據(jù)a、b之間的等量關(guān)系,將不等式中的b代換成a,化簡(jiǎn)不等式即可判斷正誤;
④根據(jù)開(kāi)口向下的函數(shù)有最大值,距離頂點(diǎn)越近的函數(shù)值越大,先判斷M、N距離頂點(diǎn)的距離即可判斷兩個(gè)點(diǎn)y值得大小.
解:①∵函數(shù)開(kāi)口向下,∴,
∵對(duì)稱(chēng)軸,,∴;
∵函數(shù)與y軸交點(diǎn)在y軸上半軸,∴,
∴;所以①正確;
②∵函數(shù)對(duì)稱(chēng)軸為,
∴,∴,
∵A(3,0)是函數(shù)與x軸交點(diǎn),對(duì)稱(chēng)軸為,
∴函數(shù)與x軸另一交點(diǎn)為(-1,0);
∵當(dāng)時(shí),,
∴,②正確;
③∵函數(shù)對(duì)稱(chēng)軸為,
∴,
∴將帶入可化為:,
∵,不等式左右兩邊同除a需要不等號(hào)變方向,可得:
,
即,此不等式一定成立,所以③正確;
④M(-3,)、N(6,)為函數(shù)圖象上的兩點(diǎn),
∵點(diǎn)M距離頂點(diǎn)4個(gè)單位長(zhǎng)度,N點(diǎn)距離頂點(diǎn)5個(gè)單位長(zhǎng)度,函數(shù)開(kāi)口向下,距離頂點(diǎn)越近,函數(shù)值越大,
∴,所以④錯(cuò)誤.
故答案為①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點(diǎn),AD=2BD,BE=CE,若S△ABC=18,設(shè)△ADF的面積為S1,△CEF的面積為S2,則S1-S2的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠C=90°,AC<BC,D為BC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.
(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫(xiě)作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=33°,則∠CAD= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b與拋物線y=x2交于A(x1,y1),B(x2,y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過(guò)一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示平面直角坐標(biāo)系中,已知A(-2,2),B(-3,-2),C(3,-2).
(1)在圖中畫(huà)出△ABC;
(2)將△ABC先向上平移4個(gè)單位長(zhǎng),再向右平移2個(gè)單位長(zhǎng)得到△A1B1C1,寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)要求,解答下列問(wèn)題:
(1)①方程x2﹣x﹣2=0的解為 ;
②方程x2﹣2x﹣3=0的解為 ;
③方程x2﹣3x﹣4=0的解為 ;
…
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程x2﹣9x﹣10=0的解為 ;
②請(qǐng)用配方法解方程x2﹣9x﹣10=0,以驗(yàn)證猜想結(jié)論的正確性.
(3)應(yīng)用:關(guān)于x的方程 的解為x1=﹣1,x2=n+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過(guò)H的直線與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F,若 時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售A、B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:
教學(xué)設(shè)備 | A | B |
進(jìn)價(jià)(萬(wàn)元/套) | 3 | 2.4 |
售價(jià)(萬(wàn)元/套) | 3.3 | 2.8 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需132萬(wàn)元,全部銷(xiāo)售后可獲毛利潤(rùn)18萬(wàn)元.
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A、B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過(guò)市場(chǎng)調(diào)查,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍.若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過(guò)138萬(wàn)元,則A種設(shè)備購(gòu)進(jìn)數(shù)量最多減少多少套?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com