【題目】某商場銷售AB兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:

教學設備

A

B

進價(萬元/套)

3

2.4

售價(萬元/套)

3.3

2.8

該商場計劃購進兩種教學設備若干套,共需132萬元,全部銷售后可獲毛利潤18萬元.

1)該商場計劃購進AB兩種品牌的教學設備各多少套?

2)通過市場調查,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過138萬元,則A種設備購進數(shù)量最多減少多少套?

【答案】1)購進、兩種品牌的教學設備分別20,30套;(2種設備購進數(shù)量最多減少10

【解析】

1)首先設該商場計劃購進A,B兩種品牌的教學設備分別為x套,y套,根據(jù)題意即可列方程組,解此方程組即可求得答案;

2)首先設A種設備購進數(shù)量減少a套,則B種設備購進數(shù)量增加1.5a套,根據(jù)題意即可列不等式320-a+2.430+1.5a≤138,解此不等式組即可求得答案.

1)設購進、兩種品牌的教學設備分別套,列方程組得:

解得

答:購進、兩種品牌的教學設備分別20,30

2)設種設備購進數(shù)量減少套,由題意得:

最多為10

答:種設備購進數(shù)量最多減少10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象過點A3,0),對稱軸為直線,給出以下結論:

;②;③;④若M-3)、N6)為函數(shù)圖象上的兩點,則,其中正確的是____________.(只要填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列一定是一元二次方程的有(

1)(a-1x+bx+c=0a,b,c是實數(shù));(22x++3=0;(3)(1-2x)(3-x=2x+1;4x+2x-y=0;(5x-8=x

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)直尺和三角尺的實物擺放圖,解決下列問題.

1)如圖1,是我們學過的用直尺和三角尺畫平行線的方法的示意圖,畫圖的原理是__________;

2)如圖2,圖中互余的角有________________,若要使直尺的邊緣DE與三角尺的AB邊平行,則應滿足_________(填角相等);

3)如圖3,若BCGH,試判斷ACFG的位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,M是弦AB的中點,過點B作⊙O的切線,與OM延長線交于點C.

(1)求證:∠A=C;

(2)若OA=5,AB=8,求線段OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國夢關乎每個人的幸福生活,為進一步感知我們身邊的幸福,展現(xiàn)成都人追夢的風采,我市某校開展了以夢想中國逐夢成都為主題的攝影大賽,要求參賽學生每人交一件作品.現(xiàn)將參賽的50件作品的成績(單位)進行統(tǒng)計如下

請根據(jù)上表提供的信息解答下列問題

(1)表中x的值為________,y的值為________;

(2)將本次參賽作品獲得A等級的學生依次用A1,A2,A3,…表示,現(xiàn)該校決定從本次參賽作品獲得A等級的學生中,隨機抽取兩名學生談談他們的參賽體會請用樹狀圖或列表法求恰好抽到學生A1A2的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年6月份,某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運往港口,已知一輛甲種貨車可裝荔枝和香蕉共5噸,且一輛甲種貨車可裝的荔枝重量(單位:噸)是其可裝的香蕉重量的4倍,一輛乙種貨車可裝荔枝香蕉各2噸;

1)一輛甲種貨車可裝載荔枝、香蕉各多少噸?

2)該果農(nóng)安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;

3)若甲種貨車每輛要付運輸費2000元,乙種貨車每輛要付運輸費1300元,則該果農(nóng)應選擇哪種方案?使運費最少?最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀.已知購買甲型機器人1臺,乙型機器人2臺,共需14萬元;購買甲型機器人2臺,乙型機器人3臺,共需24萬元.

(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;

(2)已知甲型和乙型機器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃購買這兩種型號的機器人共8臺,總費用不超過41萬元,并且使這8臺機器人每小時分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購買方案?哪個方案費用最低,最低費用是多少萬元?

查看答案和解析>>

同步練習冊答案