【題目】如圖,已知關于x的一元二次方程x2+2x+=0有兩個不相等的實數(shù)根,k為正整數(shù).

(1)求k的值;

(2)當此方程有一根為零時,直線y=x+2與關于x的二次函數(shù)y=x2+2x+的圖象交于A、B兩點,若M是線段AB上的一個動點,過點MMNx軸,交二次函數(shù)的圖象于點N,求線段MN的最大值.

【答案】(1)k=12;(2)t=﹣時,MN有最大值,最大值為

【解析】

(1)、根據(jù)方程有兩個不相等的實數(shù)根得出△>0,從而得出k的取值范圍,然后根據(jù)k為正整數(shù),從而得出k的值;(2)、將x=0代入方程求出k的值,從而得出函數(shù)解析式,解出函數(shù)的交點坐標,設Mt,t+2)(﹣2t1),則Nt,t2+2t),然后根據(jù)長度的計算法則得出函數(shù)解析式,從而得出最大值.

(1)根據(jù)題意得=22﹣4×>0,解得k<3,k為正整數(shù), 所以k=12;

(2)當x=0代入x2+2x+=0k=1,則方程為x2+2x=0, 二次函數(shù)為y=x2+2x,

解方程組,則A(﹣2,0),B(1,3),

Mt,t+2)(﹣2<t<1),則Nt,t2+2t),

所以MN=t+2﹣(t2+2t)=﹣t2t+2=﹣(t+2+

t=﹣時,MN有最大值,最大值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(xy),下列四個說法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=.其中說法正確的結論有_______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線分別交軸,軸于點.

1)當,自變量的取值范圍是 (直接寫出結果);

2)點在直線.

①直接寫出的值為

②過點作軸于點,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC60°,∠C70°,求∠DAE、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.

則正確的結論是(

A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,點是邊上一點,占上,下列選項中不正確的是( )

A. ,則

B.

C. ,的周長最小值為

D. ,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校要從小王和小李兩名同學中挑選一人參加全市知識競賽,在最近的五次選拔測試中,他倆的成績分別如下表:

次數(shù)

1

2

3

4

5

小王

60

75

100

90

75

小李

70

90

100

80

80

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

80

75

75

190

小李

(2)在這五次測試中,成績比較穩(wěn)定的同學是誰?若將80分以上(含80分)的成績視為優(yōu)秀,則小王、小李在這五次測試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=AK=,求CN的長.

查看答案和解析>>

同步練習冊答案