【題目】如圖所示,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=60°,∠C=70°,求∠DAE、∠BOA的度數(shù).
【答案】∠DAE,∠BOA的度數(shù)分別是10°,125°
【解析】
根據(jù)角平分線的定義可得∠BAE=∠CAE=∠BAC=30°,在Rt△ADC中可求得∠CAD的度數(shù),再根據(jù)∠DAE=∠CAE﹣∠CAD即可得解,根據(jù)三角形的內(nèi)角和可得∠ABC的度數(shù),即可得∠ABO的度數(shù),再在△AOB中利用三角形的內(nèi)角和為180°即可求得∠BOA的度數(shù).
解∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠CAD=180°﹣90°﹣70°=20°,
∵∠BAC=60°,AE是∠BAC的角平分線,
∴∠EAC=∠BAE=30°,
∴∠EAD=∠EAC﹣∠CAD=30°﹣20°=10°,
∠ABC=180°﹣∠BAC﹣∠C=50°,
∵BF是∠ABC的角平分線,
∴∠ABO=25°,
∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣30°﹣25°=125°.
故∠DAE,∠BOA的度數(shù)分別是10°,125°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A(2,4),B(1,1),C(5,2).
(1)在如圖所示的平面直角坐標(biāo)系中描出各點(diǎn),畫出三角形ABC;
(2)將三角形ABC向左平移6個(gè)單位,再向下平移3個(gè)單位,請(qǐng)?jiān)趫D中作出平移后的三角形A1B1C1;
(3)寫出三角形各點(diǎn)A1、B1、C1的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需要粉刷一些相同的房間,經(jīng)調(diào)查3名師傅一天粉刷8個(gè)房間,還剩40m2刷不完;5名徒弟一天可以粉刷9個(gè)房間;每名師傅比徒弟一天多刷30m2的墻面。
(1)求每個(gè)房間需要粉刷的面積;
(2)該公司現(xiàn)有36個(gè)這樣的房間需要粉刷,若只聘請(qǐng)1名師傅和2名徒弟一起粉刷,需要幾天完成?
(3)若來該公司應(yīng)聘的有3名師傅和10名徒弟,每名師傅和每名徒弟每天的工資分別是240元和200元,該公司要求這36個(gè)房間要在2天內(nèi)粉刷完成,問人工費(fèi)最低是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“※”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a※b=ab2+2ab+a.
如:1※2=1×22+2×1×2+1=9
(1)(﹣2)※3= ;
(2)若※3=16,求a的值;
(3)若2※x=m,(x)※3=n(其中x為有理數(shù)),試比較m,n的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六盤水市梅花山國(guó)際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測(cè)得滑行距離y(單位:cm)與滑行時(shí)間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來表示.
滑行時(shí)間x/s | 0 | 1 | 2 | 3 | … |
滑行距離y/cm | 0 | 4 | 12 | 24 | … |
(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測(cè)量出滑雪者的出發(fā)點(diǎn)與終點(diǎn)的距離大約800m,他需要多少時(shí)間才能到達(dá)終點(diǎn)?
(2)將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個(gè)單位,再向上平移5個(gè)單位,求平移后的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度數(shù);
(3)若AE=6,△CBD的周長(zhǎng)為20,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知關(guān)于x的一元二次方程x2+2x+=0有兩個(gè)不相等的實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有一根為零時(shí),直線y=x+2與關(guān)于x的二次函數(shù)y=x2+2x+的圖象交于A、B兩點(diǎn),若M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN⊥x軸,交二次函數(shù)的圖象于點(diǎn)N,求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線與坐標(biāo)軸交于兩點(diǎn),與直線交于點(diǎn),且點(diǎn)的橫坐標(biāo)是縱坐標(biāo)的倍.
(1)求的值.
(2)為線段上一點(diǎn),軸于點(diǎn),交于點(diǎn),若,求點(diǎn)坐標(biāo).
(3)如圖2,為點(diǎn)右側(cè)軸上的一動(dòng)點(diǎn),以為直角頂點(diǎn),為腰在第一象限內(nèi)作等腰直角,連接并延長(zhǎng)交軸于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)的位置是否發(fā)生變化?若不變,請(qǐng)求出它的坐標(biāo);如果變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設(shè)BD與CE相交于點(diǎn)O,點(diǎn)M,N分別為線段BO和CO的中點(diǎn),當(dāng)△ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無需說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com