【題目】點(diǎn)C是直線l1上一點(diǎn),在同一平面內(nèi),把一個(gè)等腰直角三角板ABC任意擺放,其中直角頂點(diǎn)C與點(diǎn)C重合,過(guò)點(diǎn)A作直線l2⊥l1,垂足為點(diǎn)M,過(guò)點(diǎn)B作l3⊥l1,垂足為點(diǎn)N
(1)當(dāng)直線l2,l3位于點(diǎn)C的異側(cè)時(shí),如圖1,線段BN,AM與MN之間的數(shù)量關(guān)系 (不必說(shuō)明理由);
(2)當(dāng)直線l2,l3位于點(diǎn)C的右側(cè)時(shí),如圖2,判斷線段BN,AM與MN之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)直線l2,l3位于點(diǎn)C的左側(cè)時(shí),如圖3,請(qǐng)你補(bǔ)全圖形,并直接寫(xiě)出線段BN,AM與MN之間的數(shù)量關(guān)系.
【答案】(1)MN=AM+BN;(2)MN=BN-AM,見(jiàn)解析;(3)見(jiàn)解析,MN=AM﹣BN.
【解析】
(1)利用AAS定理證明△NBC≌△MCA,根據(jù)全等三角形的性質(zhì)、結(jié)合圖形解答;
(2)根據(jù)直角三角形的性質(zhì)得到∠CAM=∠BCN,證明△NBC≌△MCA,根據(jù)全等三角形的性質(zhì)、結(jié)合圖形解答;
(3)根據(jù)題意畫(huà)出圖形,仿照(2)的作法證明.
(1)MN=AM+BN
(2)MN=BN-AM
理由如下:如圖2.
因?yàn)?/span>l2⊥l1,l3⊥l1
所以∠BNC=∠CMA=90°
所以∠ACM+∠CAM=90°
因?yàn)椤?/span>ACB=90°
所以∠ACM+∠BCN=90°
所以∠CAM=∠BCN
又因?yàn)?/span>CA=CB
所以△CBN≌△ACM(AAS)
所以BN=CM,NC=AM
所以MN=CM﹣CN=BN﹣AM
(3)補(bǔ)全圖形,如圖3
結(jié)論:MN=AM﹣BN
由(2)得,△CBN≌△ACM(AAS).
∴BN=CM,NC=AM
結(jié)論:MN=CN-CM=AM-BN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y1=與直線y2=ax+b交于點(diǎn)A(﹣4,1)和點(diǎn)B(m,﹣4).
(1)求雙曲線和直線的解析式;
(2)直接寫(xiě)出線段AB的長(zhǎng)和y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8…頂點(diǎn)依次用A1,A2,A3,A4,…表示,則頂點(diǎn)A2019的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某烤鴨店在確定烤鴨的烤制時(shí)間時(shí),主要依據(jù)的是下表的數(shù)據(jù):
鴨的質(zhì)量/千克 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
烤制時(shí)間/分 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
設(shè)鴨的質(zhì)量為x千克,烤制時(shí)間為t,估計(jì)當(dāng)x=2.8千克時(shí),t的值為( )
A. 128B. 132C. 136D. 140
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用熱氣球探測(cè)器測(cè)量大樓AB的高度.從熱氣球P處測(cè)得大樓頂部B的俯角為37°,大樓底部A的俯角為60°,此時(shí)熱氣球P離地面的高度為120m.試求大樓AB的高度(精確到0.1m).(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件、B兩種獎(jiǎng)品單價(jià)分別為10元、15元設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用為W元.
寫(xiě)出元與件之間的函數(shù)關(guān)系式;
若購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,求出自變量m的取值范圍,并確定最少費(fèi)用W的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個(gè)結(jié)論:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(請(qǐng)?zhí)羁眨?/span>
解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ΔABC中,∠ABC的平分線與∠ACB的外角∠ACE的平分線相交于點(diǎn)D。
⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度數(shù)。
⑵.由⑴小題的計(jì)算結(jié)果,猜想,∠A和∠D有什么數(shù)量關(guān)系,并加以證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com