【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(請?zhí)羁眨?/span>
解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )
【答案】∠3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯角相等,兩直線平行,∠DGA,兩直線平行,同旁內(nèi)角互補,已知,110°,等式的性質(zhì).
【解析】
根據(jù)平行線的性質(zhì)和已知求出∠1=∠3,根據(jù)平行線的判定定理推出AB∥DG;接下來,再根據(jù)平行線的性質(zhì)得出∠BAC+∠DGA=180°,進而不難求得∠AGD的度數(shù).
解:∵EF∥AD,
∴∠2=∠3(兩直線平行,同位角相等),
∵∠1=∠2,
∴∠1=∠3(等量代換),
∴AB∥DG(內(nèi)錯角相等,兩直線平行),
∴∠BAC+∠DGA=180°(兩直線平行,同旁內(nèi)角互補),
∵∠BAC=70°(已知),
∴∠AGD=110°(等式的性質(zhì)).
故答案為:∠3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯角相等,兩直線平行,∠DGA,兩直線平行,同旁內(nèi)角互補,已知,110°,等式的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)﹣2+(﹣7)+8.
(2)25﹣13﹣4﹣25.
(3).
(4)(﹣2.4)﹣(﹣4.5)+|﹣2.4|+(﹣0.5).
(5)()×(﹣36).
(6).
(7)×(﹣12).
(8)13×(﹣)+(﹣13)×+13×.
(9)﹣12018+.
(10).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,OA、OD重合,AOB=120,COD=50,當(dāng)AOB繞點O順時針旋轉(zhuǎn)到AO與CO重合的過程中,下列結(jié)論正確的是( )
①OB旋轉(zhuǎn)50②當(dāng)OA平分COD時,BOC=95,③DOB+AOC=170,④BOC-AOD=70
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,DE⊥BC于點E,且DE=,AD=18,∠C=60°;
(1)BC=________
(2)若動點P從點D出發(fā),速度為2個單位/秒,沿DA向點A運動,同時,動點Q從點B出發(fā),速度為3個單位/秒,沿BC向點C運動,當(dāng)一個動點到達端點時,另一個動點同時停止運動,設(shè)運動的時間為t秒。
①t=_______秒時,四邊形PQED是矩形;
②t為何值時,線段PQ與四邊形ABCD的邊構(gòu)成平行四邊形;
③是否存在t值,使②中的平行四邊形是菱形?若存在,請求出t值,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“五一”期間,小明和他的父親坐游船從甲地到乙地觀光,在售票大廳他們看到了表(一),在游船上,他又注意到了表(二).
表(一)
里程(千米) | 票價(元) | |
甲→乙 | 20 | … |
甲→丙 | 16 | … |
甲→丁 | 10 | … |
… | … | … |
表(二)
出發(fā)時間 | 到達時間 | |
甲→乙 | 8:00 | 9:00 |
乙→甲 | 9:20 | 10:00 |
甲→乙 | 10:20 | 11:20 |
… | … | … |
爸爸對小明說:“我來考考你,若船在靜水中的速度保持不變,你能知道船在靜水中的速度和水流速度嗎?”小明很快得出了答案,你知道小明是如何算的嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標(biāo)出依次行走停點E、F、M、N的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將帶有45°和30°兩塊直角三角尺的直角頂點C疊放在一起,
(1)若∠DCE=25°,則∠ACB=______;若∠ACB=150°,則∠DCE=______;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com