【題目】用一條直線 m 將如圖 1 的直角鐵皮分成面積相等的兩部分.圖 2、圖 3 分別是甲、乙兩同學(xué)給出的作法,對(duì)于兩人的作法判斷正確的是(

A. 甲正確,乙不正確B. 甲不正確,乙正確

C. 甲、乙都正確D. 甲、乙都不正確

【答案】C

【解析】

根據(jù)圖形中所畫出的虛線,可以利用圖形中的長(zhǎng)方形、梯形的面積比較得出直線兩旁的面積的大小關(guān)系.

如圖:圖形2中,直線m經(jīng)過(guò)了大長(zhǎng)方形和小長(zhǎng)方形的對(duì)角線的交點(diǎn),所以兩旁的圖形的面積都是大長(zhǎng)方形和小長(zhǎng)方形面積的一半,所以這條直線把這個(gè)圖形分成了面積相等的兩部分,即甲做法正確;

圖形3中,經(jīng)過(guò)大正方形和圖形外不添補(bǔ)的長(zhǎng)方形的對(duì)角線的交點(diǎn),直線兩旁的面積都是大正方形面積的一半-添補(bǔ)的長(zhǎng)方形面積的一半,所以這條直線把這個(gè)圖形分成了面積相等的兩部分,即乙做法正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校位于高速路AB的一側(cè)(AB成一條直線),點(diǎn)A,B為高速路上距學(xué)校直線距離最近的2個(gè)隧道出入口,點(diǎn)C、D為學(xué)校的兩棟教學(xué)樓,經(jīng)測(cè)量∠ACB=90°,∠ADB90°AC=600m,AB=1000m,點(diǎn)D到高速路的最短直線距離DE=400m.

1)求教學(xué)樓C到隧道口B的直線距離;

2)比較AC2+BC2AD2+BD2誰(shuí)大誰(shuí)小,試用計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1,圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)初三(1)班共有多少名同學(xué)?

2)補(bǔ)全條形統(tǒng)計(jì)圖,并標(biāo)上相應(yīng)的人數(shù)

3)計(jì)算扇形統(tǒng)計(jì)圖中的“其他”所對(duì)應(yīng)的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點(diǎn)A2018的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°,點(diǎn)M是斜邊AB的中點(diǎn),MDBC,且MD=CM,DEAB于點(diǎn)E,連結(jié)AD、CD.

(1)求證:△MED∽△BCA;

(2)求證:△AMD≌△CMD;

(3)設(shè)△MDE的面積為S1,四邊形BCMD的面積為S2,當(dāng)S2=S1時(shí),求cosABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問(wèn)題:

1)如果將三角形平移,使得點(diǎn)平移到圖中點(diǎn)位置,點(diǎn)、點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn),請(qǐng)畫出三角形;

2)畫出三角形關(guān)于點(diǎn)成中心對(duì)稱的三角形

3)三角形與三角形______(填“是”或“否”)關(guān)于某個(gè)點(diǎn)成中心對(duì)稱?如果是,請(qǐng)?jiān)趫D中畫出這個(gè)對(duì)稱中心,并記作點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,已知ABC≌△DBE,點(diǎn)DAC上,BCDE交于點(diǎn)P,若AD=DC=2.4,BC=4.1

1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);

2)求DCPBPE的周長(zhǎng)和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑OA⊥OC,點(diǎn)D在上,且=2,OA=4.

(1)∠COD=    °;

(2)求弦AD的長(zhǎng);

(3)P是半徑OC上一動(dòng)點(diǎn),連結(jié)AP、PD,請(qǐng)求出AP+PD的最小值,并說(shuō)明理由.

(解答上面各題時(shí),請(qǐng)按題意,自行補(bǔ)足圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P在該拋物線上(P點(diǎn)與A、B兩點(diǎn)不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點(diǎn)P為拋物線y=ax2+bx+c(a≠0)的勾股點(diǎn).

(1)直接寫出拋物線y=-x2+1的勾股點(diǎn)的坐標(biāo).

(2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.

(3)在(2)的條件下,點(diǎn)Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(diǎn)(異于點(diǎn)P)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案