【題目】如圖,OA=OB,∠A=∠B,有下列4個結論:①△AOD≌△BOC,②EA=EB,③點E在∠O的平分線上.④若OC=2CA,△AEC的面積為1,那么四邊形OCED的面積為4.其中正確的結論個數(shù)為( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】

根據(jù)全等三角形的判定得出AOD≌△BOC(ASA),則OD=CO,從而證出ACE≌△BDE,連接OE,可證明AOE≌△BOE,則得出點E在∠O的平分線上,根據(jù)AOE≌△BOE、ACE≌△BDE即可求得SACE=SOCE=SODE=SBDE=1,即可解題.

①在AODBOC中,

,

∴△AOD≌△BOC(ASA),故①正確;

OD=CO,

BD=AC,

②在ACEBDE中,

,

∴△ACE≌△BDE(AAS),

AE=BE,故②正確;

③連接OE,

AOEBOE中,

,

∴△AOE≌△BOE(SSS),

∴∠AOE=BOE,

∴點E在∠O的平分線上,故③正確;

④∵OC=2CA,

OD=2BD,

SACE=SBDE=1,

∵△AOE≌△BOE,ACE≌△BDE,

SODE=2SBDE=2,

∴四邊形OCED的面積為4,故④正確;

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生數(shù)學科目期末評價成績是由完成作業(yè)、單元檢測、期末考試三項成績構成的,如果期末評價成績80分以上(含80分),則評為優(yōu)秀.下面表中是小張和小王兩位同學的成績記錄:

完成作業(yè)

單元檢測

期末考試

小張

70

90

80

小王

60

75

(1)若按三項成績的平均分記為期末評價成績,請計算小張的期末評價成績;

(2)若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:m的權重,小張的期末評價成績?yōu)?/span>81分,則小王在期末(期末成績?yōu)檎麛?shù))應該最少考多少分才能達到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場對A、B兩款運動鞋的銷售情況進行了為期5天的統(tǒng)計,得到了這兩款運動鞋每天的銷售量及總銷售額統(tǒng)計圖(如圖所示).已知第4B款運動鞋的銷售量是A款的

1)求第4B款運動鞋的銷售量

2)這5天期間,B款運動鞋每天銷售量的平均數(shù)和中位數(shù)分別是多少?

3)若在這5天期間兩款運動鞋的銷售單價保持不變,求第3天的總銷售額(銷售額=銷售單價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圓的兩條平行的弦長分別為6cm和8cm,圓的半徑為5cm,則兩條平行弦的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(概念學習)

規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方”,一般地,把(a≠0)記作a,讀作“a的圈n次方”.

(初步探究)

(1)直接寫出計算結果:2=_____,(﹣=_____

(2)關于除方,下列說法準確的選項有_________(只需填入正確的序號)

①.任何非零數(shù)的圈2次方都等于1; .對于任何正整數(shù)n,1=1;

.3=4 .負數(shù)的圈奇數(shù)次方結果是負數(shù),負數(shù)的圈偶數(shù)次方結果是正數(shù).

(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?

例如: 2=2÷2÷2÷2

=2×××

=__2 (冪的形式)

試一試:將下列除方運算直接寫成冪的形式.

5=_____;(﹣)=_____;a=_____(a≠0).

算一算:÷23+(﹣8)×2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點E在△ABC內,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)當α=60°時(如圖1), ①判斷△ABC的形狀,并說明理由;
②求證:BD= AE;
(2)當α=90°時(如圖2),求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y=2x和函數(shù)y=的圖象交于A、B兩點,過點A作AEx軸于點E,若AOE的面積為4,P是坐標平面上的點,且以點B、O、E、P為頂點的四邊形是平行四邊形,則k= ,滿足條件的P點坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有下列函數(shù):①y=;②y=x-1;③y=-3x+1;④y=;⑤y=- (x>0);⑥y= (x<0).其中yx的增大而減小的是______(填序號).

查看答案和解析>>

同步練習冊答案