【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD于Q,PQ=4,PE=1.
(1)求證:∠BPQ=60°(提示:利用三角形全等、外角的性質(zhì))
(2)求BE的長(zhǎng).
【答案】
(1)解:如圖,
∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠ACD=60°,
又∵AE=CD,
∴△BAE≌△ACD,
∴∠1=∠2,
∵∠BAE=∠1+∠BAD=60°,
∴∠BAE=∠2+∠BAD=60°,
∴∠BPQ=60°
(2)解:∵BQ⊥AD,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9
【解析】(1)根據(jù)已知條件可證△BAE≌△ACD,結(jié)論可得證;(2)根據(jù)30°所對(duì)的直角邊等于斜邊的一半可求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,將點(diǎn)(﹣2,3)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)向左平移2個(gè)單位長(zhǎng)度得到的點(diǎn)的坐標(biāo)是( )
A.(4,﹣3)
B.(﹣4,3)
C.(0,﹣3)
D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P為△ABC中BC邊的延長(zhǎng)線(xiàn)上一點(diǎn),∠A=50°,∠B=70°,則∠ACP=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)多邊形的各個(gè)內(nèi)角與它的某個(gè)外角的和是2036,求:這個(gè)多邊形的邊數(shù)和這個(gè)外角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得到△ABE,
若AF=4,AB=7.
(1)旋轉(zhuǎn)中心為_(kāi)_____;旋轉(zhuǎn)角度為_(kāi)_____;
(2)DE的長(zhǎng)度為_(kāi)_____;
(3)指出BE與DF的位置關(guān)系如何?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com