【題目】如圖,在長方形紙片ABCD中,AB3,AD9,折疊紙片ABCD,使頂點C落在邊AD上的點G處,折痕分別交邊AD、BC于點E、F,則GEF的面積最大值是________.

【答案】7.5

【解析】

當(dāng)點G與點A重合時,GEF的面積最大,根據(jù)折疊性質(zhì)可得GF=FC,∠AFE=EFC,根據(jù)勾股定理可求AF=5,根據(jù)矩形的性質(zhì)可得∠EFC=AEF=AFE,可得AE=AF=5,即可求GEF的面積最大值.

如圖,當(dāng)點G與點A重合時,GEF的面積最大,

由折疊得,GF=FC,∠AFE=EFC

RtABF中,AF2=AB2+BF2,

AF2=9+9-AF2,

AF=5

∵四邊形ABCD是矩形

ADBC

∴∠AEF=EFC

∴∠AEF=AFE

AE=AF=5

∴△GEF的面積最大值=×5×3=7.5

故答案為:7.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小云的書包里只放了A4紙大小的試卷共4,其中語文1張、數(shù)學(xué)2張、英語1.

(1)若隨機地從書包中抽出1,則抽出的試卷是數(shù)學(xué)試卷的概率為______.

(2)若隨機地從書包中抽出2,用畫樹狀圖的方法,求抽出的試卷中有數(shù)學(xué)試卷的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.P是該直線與雙曲線在第一象限內(nèi)的一個交點,PBx軸于B,SABP=16.

(1)求證:AOC∽△ABP;

2)求點P的坐標(biāo);

3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),QDx軸于D,當(dāng)BQDAOC相似時,求點Q的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,兩條高AD,BE交于點P.過點E,垂足為G,交AD于點F,過點F,交BC于點H,交BE交于點Q,連接DE.

1)若,,求DE的長

2)若,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓的圓心與坐標(biāo)原點重合,半圓的半徑1,直線的解析式為若直線與半圓只有一個交點,則t的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.

(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?

(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間PBQ的面積為12cm2?

查看答案和解析>>

同步練習(xí)冊答案