【題目】如圖,直線y=x+3分別交 x軸、y軸于點(diǎn)A、C.點(diǎn)P是該直線與雙曲線在第一象限內(nèi)的一個(gè)交點(diǎn),PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)Q與點(diǎn)P在同一個(gè)反比例函數(shù)的圖象上,且點(diǎn)Q在直線PB的右側(cè),作QD⊥x軸于D,當(dāng)△BQD與△AOC相似時(shí),求點(diǎn)Q的橫坐標(biāo).
【答案】(1)證明見解析;(2)點(diǎn)P的坐標(biāo)為(2,4);(3)點(diǎn)Q的橫坐標(biāo)為:或.
【解析】
(1)利用PB∥OC,即可證明三角形相似;
(2)由一次函數(shù)解析式,先求點(diǎn)A、C的坐標(biāo),由△AOC∽△ABP,利用線段比求出BP,AB的值,從而可求出點(diǎn)P的坐標(biāo)即可;
(3)把P坐標(biāo)代入求出反比例函數(shù),設(shè)Q點(diǎn)坐標(biāo)為(n,),根據(jù)△BQD與△AOC相似分兩種情況,利用線段比聯(lián)立方程組求出n的值,即可確定出Q坐標(biāo).
(1)證明:∵PB⊥ x軸,OC⊥x軸,
∴OC∥PB,
∴△AOC∽△ABP;
(2)解:對(duì)于直線y=x+3,
令x=0,得y=3;
令 y=0,得x=-6 ;
∴A(-6,0),C(0,4),
∴OA=6,OC=3.
∵△AOC∽△ABP,
∴,
∵S△ABP=16,S△AOC=,
∴,
∴,即,
∴PB=4,AB=8,
∴OB=2,
∴點(diǎn)P的坐標(biāo)為:(2,4).
(3)設(shè)反比例函數(shù)的解析式為:y=,
把P(2,4)代入,得k=xy=2×4=8,
∴y=.
點(diǎn)Q在雙曲線上,可設(shè)點(diǎn)Q的坐標(biāo)為:(n,)(n>2),
則BD=,QD=,
①當(dāng)△BQD∽△ACO時(shí),,
即,
整理得:,
解得:或;
②當(dāng)△BQD∽△CAO時(shí),,
即,
整理得:,
解得:,(舍去),
綜上①②所述,點(diǎn)Q的橫坐標(biāo)為:1+或1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)等腰直角三角形AOB,∠OAB= 90° ,直角邊AO在x軸上,且AO= 1.將 Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90° 得到等腰直角三角形A1OB1,且A1O= 2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O=2A1O......依此規(guī)律,得到等腰直角三角形A2018OB2018 ,則點(diǎn)A2018的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到矩形AEFG.
(1)如圖1,若在旋轉(zhuǎn)過程中,點(diǎn)E落在對(duì)角線AC上,AF,EF分別交DC于點(diǎn)M,N.
①求證:MA=MC;
②求MN的長(zhǎng);
(2)如圖2,在旋轉(zhuǎn)過程中,若直線AE經(jīng)過線段BG的中點(diǎn)P,連接BE,GE,求△BEG的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標(biāo)系中,OB 在 x軸上,若 OA=2,將三角板繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 75°,則點(diǎn) A 的對(duì)應(yīng)點(diǎn) A′ 的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)求證:四邊形AEBO是矩形.
(2)若CD=5,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形紙片ABCD中,AB=3,AD=9,折疊紙片ABCD,使頂點(diǎn)C落在邊AD上的點(diǎn)G處,折痕分別交邊AD、BC于點(diǎn)E、F,則△GEF的面積最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC邊長(zhǎng)為2,D為BC中點(diǎn),連接AD.點(diǎn)O在線段AD上運(yùn)動(dòng)(不含端點(diǎn)A、D),以點(diǎn)O為圓心,長(zhǎng)為半徑作圓,當(dāng)O與△ABC的邊有且只有兩個(gè)公共點(diǎn)時(shí),DO的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com