【題目】如圖,已知四邊形ABCD為正方形,AB=2 ,點(diǎn)E為對角線AC上一動點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.

(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.

【答案】
(1)

解:如圖,作EM⊥BC,EN⊥CD

∴∠MEN=90°,

∵點(diǎn)E是正方形ABCD對角線上的點(diǎn),

∴EM=EN,

∵∠DEF=90°,

∴∠DEN=∠MEF,

在△DEM和△FEM中,

∴△DEM≌△FEM,

∴EF=DE,

∵四邊形DEFG是矩形,

∴矩形DEFG是正方形;


(2)

解:CE+CG的值是定值,定值為4,

∵正方形DEFG和正方形ABCD,

∴DE=DG,AD=DC,

∵∠CDG+∠CDE=∠ADE+∠CDE=90°,

∴∠CDG=∠ADE,

∴△ADE≌△CDG,

∴AE=CG.

∴CE+CG=CE+AE=AC= AB= ×2 =4,


(3)

解:如圖,

∵正方形ABCD中,AB=2

∴AC=4,

過點(diǎn)E作EM⊥AD,

∴∠DAE=45°,

∵AE=x,

∴AM=EM= x,

在Rt△DME中,DM=AD﹣AM=2 x,EM= x,

根據(jù)勾股定理得,DE2=DM2+EM2=(2 x)2+( x)2=x2﹣4x+8,

∵四邊形DEFG為正方形,

∴S=S正方形DEFG=DE2=x2﹣4x+8.


【解析】(1)作出輔助線,得到EN=EM,然后判斷∠DEN=∠FEM,得到△DEM≌△FEM,則有DE=EF即可;(2)同(1)的方法判斷出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC=4;(3)由正方形的性質(zhì)得到∠DAE=45°,表示出AM=EM,再表示出DM,再用勾股定理求出DE2
【考點(diǎn)精析】關(guān)于本題考查的正方形的判定方法,需要了解先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖所示放置,點(diǎn)A1 , A2 , A3 , 和點(diǎn)C1 , C2 , C3 , …,分別在直線y=kx+b(k>0)和x軸上,已知點(diǎn)B1 , B2 , B3 , B4的坐標(biāo)分別為(1,1)(3,2),(7,4),(15,8),則Bn的坐標(biāo)是(
A.(2n﹣1,2n1
B.(2n , 2n﹣1)
C.(2n1 , 2n
D.(2n1﹣1,2n1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤25).過點(diǎn)DDF⊥BC于點(diǎn)F,連接DE,EF.

(1)求證:四邊形AEFD是平行四邊形;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c為有理數(shù),且它們在數(shù)軸上的位置如圖所示.

(1)試判斷a,b,c的正負(fù)性;

(2)根據(jù)數(shù)軸化簡:

|a|=_____; |b|=_____:

|c|=_____; |-a|=_____;

|-b|=_____; |-c|=_____.

(3)|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))

(1)計(jì)算a15的值;

(2)通過拼圖你發(fā)現(xiàn)前三個圖形的面積之和與第四個正方形的面積之間有什么關(guān)系:

__________________________________(用含a、b的式子表示);

(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù) 的圖象交于二四象限內(nèi)的A、B 兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n),線段OA=5,E為x軸負(fù)半軸上一點(diǎn),且sin∠AOE=
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) 的坐標(biāo)為,以 A 為頂點(diǎn)的的兩邊始終與 軸交于 、兩點(diǎn)(左面),且

(1)如圖,連接,當(dāng) 時,試說明:

(2)過點(diǎn) 軸,垂足為,當(dāng)時,將沿所在直線翻折,翻折后邊軸于點(diǎn) ,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在直線AB,點(diǎn)A1,A2,A3,…在射線OA,點(diǎn)B1,B2,B3,…在射線OB,圖中的每一個實(shí)線段和虛線段的長均為1個單位長度.一個動點(diǎn)MO點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O為圓心的半圓勻速運(yùn)動,速度為每秒1個單位長度.按此規(guī)律,則動點(diǎn)M到達(dá)A101點(diǎn)處所需時間為(  ).

A. 5050π B. 5050π+101 C. 5055π D. 5055π+101

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB,用尺規(guī)按要求作圖.(用黑色水筆描粗作圖痕跡,不要求寫作法)

(1)延長線段ABC,使BC=AB

(2)延長線段BAD,使AD=2AB

(3)若AB=2cm,則BD=__________cm,CD=__________.

查看答案和解析>>

同步練習(xí)冊答案