【題目】已知△ABC與△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=_____.
【答案】1或.
【解析】
根據(jù)題意分兩種情形分別求解即可.
解:如圖,
當(dāng)CD在AB同側(cè)時(shí),∵AC=AD=1,∠C=60°,
∴△ACD是等邊三角形,
∴CD=AC=1,
當(dāng)C、D在AB兩側(cè)時(shí),∵△ABC與△ABD不全等,
∴△ABD′是由△ABD沿AB翻折得到,
∴△ABD≌△ABD′,
∴∠AD′B=ADB=120°,
∵∠C+∠AD′B=180°,
∴∠CAD′+∠CBD′=180°,
∵∠CBD′=90°,
∴∠CAD′=90°,
∴CD′=.
當(dāng)D″在BD′的延長(zhǎng)線(xiàn)上時(shí),AD″=AC,也滿(mǎn)足條件,此時(shí)CD″=BC= ,此時(shí)△ABD≌△ABC,不符合題意,
故答案為1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,直線(xiàn)y=x+4經(jīng)過(guò)點(diǎn)A、C,點(diǎn)P為拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn).
(1)求拋物線(xiàn)的表達(dá)式;
(2)如圖,當(dāng)CP//AO時(shí),求∠PAC的正切值;
(3)當(dāng)以AP、AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線(xiàn)上時(shí),求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,現(xiàn)選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組、第二組、…、第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.
(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?
(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進(jìn)一步的臨床試驗(yàn),若從三組志愿者中按比例分配20張床位,則舒張壓數(shù)據(jù)在[14,15)的志愿者總共可以得到多少?gòu)埓参唬?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的一條弦,點(diǎn)O在線(xiàn)段AC上,AC=AB,OC=3,sinA=.求:(1)圓O的半徑長(zhǎng);(2)BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分別是邊AB、AC的中點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿DE方向運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥BC于Q,過(guò)點(diǎn)Q 作QR∥BA交AC于R,當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)P停止運(yùn)動(dòng).設(shè)BQ=x,QR=y.
(1)求點(diǎn)D到BC的距離;
(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(3)是否存在點(diǎn)P,使△PQR是以PQ為一腰的等腰三角形?若存在,請(qǐng)求出所有滿(mǎn)足要求的x的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽(yáng)光線(xiàn)與水平面所成的角為32.3°,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽(yáng)光線(xiàn)與水平面所成的角為55.7°,女生樓在男生樓墻面上的影高為DA.已知CD=42m.求樓間距AB的長(zhǎng)度為多少米?(參考數(shù)據(jù):sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=6,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與△ABC相似,則AE的長(zhǎng)為( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3)
(1)將△ABC向右平移6個(gè)單位至△A1B1C1,再將△A1B1C1繞點(diǎn)E(5,1)逆時(shí)針旋轉(zhuǎn)90°至△A2B2C2,請(qǐng)按要求畫(huà)出圖形;
(2)在(1)的變換過(guò)程中,直接寫(xiě)出點(diǎn)C的運(yùn)動(dòng)路徑長(zhǎng)
(3)△A2B2C2可看成△ABC繞某點(diǎn)P旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角邊長(zhǎng)為1cm的等腰直角三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列各問(wèn)題:
(1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com