【題目】已知A,B,C三點(diǎn)在數(shù)軸上的位置如圖所示,它們表示的數(shù)分別是a,b,c.
(1)填空:abc 0,a+b 0,ab﹣ac 0;(填“>”,“=”或“<”)
(2)若|a|=2且點(diǎn)B到點(diǎn)A,C的距離相等,
①當(dāng)b2=16時(shí),求c的值;
②P是數(shù)軸上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P表示的數(shù)為x,當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不變,求b的值.
【答案】(1)<,>,>;(2)①10,②3
【解析】
(1)根據(jù)點(diǎn)在數(shù)軸上的位置得到a<0<b<c,|b|>|a|,于是得到結(jié)論;
(2)①根據(jù)已知條件達(dá)到a=﹣2,b=4,根據(jù)點(diǎn)B到點(diǎn)A,C的距離相等,列方程即可得到結(jié)論;
②依題意得原式=(b+c﹣11)x+10a+c當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,原式的值保持不變,即原式的值與x無(wú)關(guān),列方程組即可得到結(jié)論.
解:(1)∵a<0<b<c,|b|>|a|,
∴abc<0,a+b>0,ab﹣ac>0,
故答案為:<,>,>;
(2)①∵|a|=2 且a<0,
∴a=﹣2,
∵b2=16 且b>0,
∴b=4,
∵點(diǎn)B到點(diǎn)A,C的距離相等,
∴|4﹣(﹣2)|=|c﹣4|,
∴c=10;
②依題意,得bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x﹣10a+c,
∴原式=(b+c﹣11)x﹣10a+c
∵當(dāng)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,原式的值保持不變,
即原式的值與x無(wú)關(guān),
∴b+c﹣11=0,
又∵b+2=c﹣b,
∴b=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長(zhǎng)為_____,面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°).
(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(2)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫(xiě)出∠ACE所有可能的度數(shù)及對(duì)應(yīng)情況下的平行線(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)如圖,四邊形ABCD為菱形,點(diǎn)E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交AB于點(diǎn)F,連結(jié)BE.
(1)如圖①,求證:∠AFD=∠EBC;
(2)如圖②,若DE=EC且BE⊥AF,求∠DAB的度數(shù);
(3)若∠DAB=90°且當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù)(只寫(xiě)出條件與對(duì)應(yīng)的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】剛剛升入初一,學(xué)習(xí)成績(jī)優(yōu)異但體育一般的王晴同學(xué)未雨綢繆,已經(jīng)為將來(lái)的體育中考做起了準(zhǔn)備.上周末她在家練習(xí)1分鐘跳繩,以每分鐘150下為基準(zhǔn),超過(guò)或不足的部分分別用正負(fù)數(shù)來(lái)表示,8次成績(jī)(單位:下)分別是-10,-8,-5,-2,+2,+8,+3,-4.
(1)成績(jī)最好的一次比最差的一次多跳多少下?
(2)求王晴這8次跳繩的平均成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)本次調(diào)查學(xué)生共 人, = ,并將條形圖補(bǔ)充完整;
(2)如果該校有學(xué)生2000人,請(qǐng)你估計(jì)該校選擇“跑步”這種活動(dòng)的學(xué)生約有多少人?
(3)學(xué)校讓每班在A、B、C、D四鐘活動(dòng)形式中,隨機(jī)抽取兩種開(kāi)展活動(dòng),請(qǐng)用樹(shù)狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往離學(xué)校12千米的地方參加植樹(shù)活動(dòng).分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時(shí)間t(分鐘)變化的函數(shù)圖象,解決下列問(wèn)題:
(1)求出甲、乙兩人所行駛的路程S甲、S乙與t之間的關(guān)系式;
(2)甲行駛15分鐘后,甲、乙兩人相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)為了解自己居住的小區(qū)家庭生活用水情況,從中隨機(jī)調(diào)查了其中的家庭一年的月平均用水量(單位:頓).并將調(diào)查結(jié)果制成了如圖所示的條形和扇形統(tǒng)計(jì)圖.
小明隨機(jī)調(diào)查了 戶家庭,該小區(qū)共有 戶家庭;
, ;
這個(gè)樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
根據(jù)樣本數(shù)據(jù),請(qǐng)估計(jì)該小區(qū)家庭月平均用水量不超過(guò)噸的有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM,PN分別交AB,BC于E,F(xiàn)兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論:(1)EF=OE;(2)S四邊形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OG·BD=AE2+CF2,其中正確的是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com