【題目】如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.則ABCD的周長為_____,面積為_____.
【答案】39cm60cm2
【解析】
根據(jù)角平分線的定義和平行線的性質(zhì)得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根據(jù)直角三角形的勾股定理得到BC=13cm,根據(jù)等腰三角形的性質(zhì)得到AB=CD=AD=CD=6.5cm,從而求得該平行四邊形的周長;根據(jù)直角三角形的面積可以求得平行四邊形BC邊上的高.
∵BE、CE分別平分∠ABC、∠BCD,
∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD,
∵AD∥BC,AB∥CD,
∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,
∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,
∴AB=AE,CD=DE,∠BEC=90°,
在Rt△BCE中,根據(jù)勾股定理得:BC=13cm,
根據(jù)平行四邊形的對邊相等,得到:AB=CD,AD=BC,
∴平行四邊形的周長等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;
作EF⊥BC與F,根據(jù)直角三角形的面積公式得:EF=cm,
∴S平行四邊形ABCD=BC·EF==60cm2,
故答案為:39cm,60cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年體育中考在即,學(xué)校體育組對九(1)班50名學(xué)生進(jìn)行了長跑項目的測試,根據(jù)測試成績制作了如圖兩個統(tǒng)計圖.
根據(jù)統(tǒng)計圖解答下列問題:
(1)本次測試的學(xué)生中,得4分的學(xué)生有多少人?
(2)本次測試的平均分是多少?
(3)該校九年級共有600名學(xué)生參加了長跑項目的測試,估計測試成績在4分以上(含4分)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球氣候變暖導(dǎo)致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長,每一個苔蘚都會長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時間(單位:年)。
(1)計算冰川消失16年后苔蘚的直徑為多少厘米?
(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是平行四邊形ABCD的對角線,E、H分別為邊BA和邊BC延長線上的點,連接EH交AD、CD于點F、G,且EH∥AC.
(1)求證:EG=FH;
(2)若△ACD是等腰直角三角形,∠ACD=90°,F(xiàn)是AD的中點,AD=6,連接BF,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y= 的圖像交于點A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)y= 和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC.求△AOC的面積.、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,…,則第⑥個圖形中五角星的個數(shù)為( )
A.50
B.64
C.68
D.72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算與解不等式
(1)計算:(3﹣π)0+2tan60°+(﹣1)2015﹣ .
(2)解不等式組: ,并把它的解在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達(dá)式;
(2)證明:四邊形AOBC的兩條對角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點D,E,F(xiàn),G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點重合)若能,求出DEFG的最大面積,并求出此時點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com