【題目】如圖,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù) 的圖象過(guò)AB的中點(diǎn)D,且和BC相交于點(diǎn)E,F為第一象限的點(diǎn),AF=12,CF=13.
(1)求反比例函數(shù)和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積?
【答案】解:(1)依題意,得點(diǎn)B的坐標(biāo)為(3,4),點(diǎn)D的坐標(biāo)為(3,2)
將(3,2)代入,得k=6.
所以反比例函數(shù)的解析式為.
設(shè)點(diǎn)E的坐標(biāo)為(m,4),將其代入,m=,
故點(diǎn)E的坐標(biāo)為(,4).
設(shè)直線OE的解析式為,將(,4)代入得
所以直線OE的解析式為.
(2)連結(jié)AC,由勾股定理得.
又∵,
∴ 由勾股定理的逆定理得∠CAF=90°.
∴。
【解析】
(1)根據(jù)反比例圖像上點(diǎn)D的坐標(biāo)易求反比例函數(shù)的關(guān)系式;由于直線OE是一條過(guò)原點(diǎn)的直線,只要知道點(diǎn)E的坐標(biāo),而易得到點(diǎn)E的縱坐標(biāo)且點(diǎn)E又在反比例函數(shù)上,易求點(diǎn)E的橫坐標(biāo)。
(2)利用轉(zhuǎn)化思想,將不規(guī)則四邊形轉(zhuǎn)化成兩個(gè)直角三角形,其中是直角三角形需要利用勾股定理逆定理判斷。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當(dāng)?shù)囟林形?/span>12時(shí)太陽(yáng)光線與水平面的夾角為30°.
(1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長(zhǎng)?
(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是多少米?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過(guò)A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱(chēng)軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點(diǎn)O,點(diǎn)E在AO上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)m°得到△EDC,若點(diǎn)A、D、E在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( 。
A. (m﹣n)°B. (90+n-m)°C. (90-n+m)°D. (180﹣2n﹣m)°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象
如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:
①兩人相遇前,甲的速度小于乙的速度; ②出發(fā)后1小時(shí),兩人行程均為10km;
③出發(fā)后1.5小時(shí),甲的行程比乙多3km; ④甲比乙先到達(dá)終點(diǎn).
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,一架長(zhǎng)4米的梯子AB斜靠在與地面OM垂直的墻壁ON上,梯子與地面所成的角為60度.
(1)求圖(1)中的AO與BO的長(zhǎng)度;
(2)若梯子頂端A沿NO下滑,同時(shí)底端B沿OM向右滑行.
①如圖(2)所示,設(shè)A點(diǎn)下滑到C點(diǎn),B點(diǎn)向右滑行到D點(diǎn),并且AC:BD2:3,請(qǐng)計(jì)算AC的長(zhǎng)度;
②如圖(3)所示,當(dāng)A點(diǎn)下滑到A點(diǎn),B點(diǎn)向右滑行到B點(diǎn)時(shí),梯子AB的中點(diǎn)P也隨之運(yùn)動(dòng)到P點(diǎn),若POP15,試求AA的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com