【題目】如圖,正方形ABCD的邊長為a,射線AM是∠A外角的平分線,點(diǎn)E在邊AB上運(yùn)動(不與點(diǎn)A、B重合),點(diǎn)F在射線AM上,且AF=√2BE,CF與AD相交于點(diǎn)G,連結(jié)EC、EF、EG.
(1)求證:CE=EF;
(2)求△AEG的周長(用含a的代數(shù)式表示)
(3)試探索:點(diǎn)E在邊AB上運(yùn)動至什么位置時,△EAF的面積最大?
【答案】(1)見解析;(2)2a;(3)點(diǎn)在邊中點(diǎn)時,最大,最大值為
【解析】
(1)過點(diǎn)作于點(diǎn),依據(jù)SAS證明,即可求證;
(2)先在(1)的基礎(chǔ)上繼續(xù)證明是等腰直角三角;把繞點(diǎn)逆時針旋轉(zhuǎn)至位置,即可證明(SAS),從而得到,繼而得到△AEG的周長;
(3)設(shè),由(1)得,建立二次函數(shù),即可求出最值.
(1)證明:如圖,過點(diǎn)作于點(diǎn),則
平分,
是等腰直角三角形,
,,
,
又
(2)
又在中,
由(1)知,
是等腰三角形,
把繞點(diǎn)逆時針旋轉(zhuǎn)至位置,如圖所示.
,,
,
又
(SAS)
(3)設(shè),由(1)得
則
當(dāng),即點(diǎn)在邊中點(diǎn)時,最大,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人走進(jìn)一家商店,進(jìn)門付l角錢,然后在店里購物花掉當(dāng)時他手中錢的一半,走出商店付1角錢;之后,他走進(jìn)第二家商店付1角錢,在店里花掉當(dāng)時他手中錢的一半, 走出商店付1角錢;他又進(jìn)第三家商店付l角錢,在店里花掉當(dāng)時他手中錢的一半,出店付1角錢;最后他走進(jìn)第四家商店付l角錢,在店里花掉當(dāng)時他手中錢的一半, 出店付1角錢,這時他一分錢也沒有了.該人原有錢的數(shù)目是________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),在建立的平面直角坐標(biāo)系中,△ABC繞旋轉(zhuǎn)中心P逆時針旋轉(zhuǎn)90°后得到△A1B1C1.
(1)在圖中標(biāo)示出旋轉(zhuǎn)中心P,并寫出它的坐標(biāo);
(2)以原點(diǎn)O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E為BC上一點(diǎn),連接AE,作EF⊥AE交AB于F.
(1)求證:△AGC∽△EFB.
(2)除(1)中相似三角形,圖中還有其它相似三角形嗎?如果有,請把它們都寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個邊長為a的大正方形和四個邊長為b的全等的小正方形(其中a>2b),按如圖方式擺放,并順次連接四個小正方形落入大正方形內(nèi)部的頂點(diǎn),得到四邊形ABCD.
下面有四種說法:
①陰影部分周長為4a;
②陰影部分面積為(a+2b)(a-2b);
③四邊形ABCD周長為8a-4b;
④四邊形ABCD的面積為a24ab4b2.
所有合理說法的序號是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點(diǎn)E,經(jīng)過B,D,E三點(diǎn)作⊙O.
(1)求證:AC與⊙O相切于D點(diǎn);
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com