【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
【答案】(1)證明見解析;(2)AD=2.
【解析】(1)如圖,連接OA,根據(jù)同圓的半徑相等可得:∠D=∠DAO,由同弧所對(duì)的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對(duì)的圓周角是直角得:∠BAD=90°,可得結(jié)論;
(2)先證明OA⊥BC,由垂徑定理得:,F(xiàn)B=BC,根據(jù)勾股定理計(jì)算AF、OB、AD的長即可.
(1)如圖,連接OA,交BC于F,
則OA=OB,
∴∠D=∠DAO,
∵∠D=∠C,
∴∠C=∠DAO,
∵∠BAE=∠C,
∴∠BAE=∠DAO,
∵BD是⊙O的直徑,
∴∠BAD=90°,
即∠DAO+∠BAO=90°,
∴∠BAE+∠BAO=90°,即∠OAE=90°,
∴AE⊥OA,
∴AE與⊙O相切于點(diǎn)A;
(2)∵AE∥BC,AE⊥OA,
∴OA⊥BC,
∴,F(xiàn)B=BC,
∴AB=AC,
∵BC=2,AC=2,
∴BF=,AB=2,
在Rt△ABF中,AF==1,
在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
∴OB=4,
∴BD=8,
∴在Rt△ABD中,AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市決定在全市中小學(xué)開展“關(guān)注校車、關(guān)愛學(xué)生”為主題的交通安全教育宣傳周活動(dòng),幸福中學(xué)為了了解學(xué)生的上學(xué)方式,在本校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩副不完整的統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)圖中提供的信息,解答下列問題.
(1)m= %,這次共抽取 名學(xué)生進(jìn)行調(diào)查;
(2)求騎自行車上學(xué)的人數(shù)?并補(bǔ)全條形圖;
(3)在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?
(4)在扇形統(tǒng)計(jì)圖中,步行所對(duì)應(yīng)的扇形的圓心角的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx+1與拋物線y=x2-4x
(1)求證:直線l與該拋物線總有兩個(gè)交點(diǎn);
(2)設(shè)直線l與該拋物線兩交點(diǎn)為A,B,O為原點(diǎn),當(dāng)k=-2時(shí),求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018霧霾天氣趨于嚴(yán)重,某商場根據(jù)民眾健康需要,從廠家購進(jìn)了A,B兩種型號(hào)的空氣凈化器,如果銷售15臺(tái)A型和10臺(tái)B型空氣凈化器的利潤為6000元,銷售10臺(tái)A型和15臺(tái)B型空氣凈化器的利潤為6500元.
(1)求每臺(tái)A型空氣凈化器和B型空氣凈化器的銷售利潤;
(2)該商場計(jì)劃一次購進(jìn)兩種型號(hào)的空氣凈化器共160臺(tái),其中B型空氣凈化器的進(jìn)貨量不超過A型空氣凈化器的2倍,設(shè)購進(jìn)A型空氣凈化器x臺(tái),這160臺(tái)空氣凈化器的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該公司購進(jìn)A型、B型空氣凈化器各多少臺(tái)時(shí),才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)質(zhì)點(diǎn)在第一象限及x軸、y軸上運(yùn)動(dòng),在第一秒鐘,它從原點(diǎn)運(yùn)動(dòng)到(0,1),然后接著按圖中箭頭所示方向運(yùn)動(dòng){即(0,0)﹣(0,1)﹣(1,1)﹣(1,0)…},且每秒移動(dòng)一個(gè)單位,那么第35秒時(shí)質(zhì)點(diǎn)所在位置的坐標(biāo)是( 。
A. (4,0)B. (5,0)C. (0,5)D. (5,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( 。
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請(qǐng)用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P在優(yōu)弧CAB上時(shí),△PBC的面積最大,請(qǐng)保留作圖痕跡,并求出△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動(dòng)點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)E在P的右側(cè),且PE=1,連結(jié)CE.P從點(diǎn)A出發(fā),沿AB方向運(yùn)動(dòng),當(dāng)E到達(dá)點(diǎn)B時(shí),P停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A. 一直減小B. 一直不變C. 先減小后增大D. 先增大后減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com